
Sparse Representation of Implicit Flows
with Applications to Side-Channel Detection

Bruno Rodrigues
UFMG, Brazil

brunors@dcc.ufmg.br

Fernando Magno Quintão Pereira
UFMG, Brazil

fernando@dcc.ufmg.br

Diego Aranha
UNICAMP, Brazil

dfaranha@ic.unicamp.br

Abstract
Information flow analyses traditionally use the Program Depen-
dence Graph (PDG) as a supporting data-structure. This graph re-
lies on Ferrante et al.’s notion of control dependences to represent
implicit flows of information. A limitation of this approach is that
it may createO(|I|× |E|) implicit flow edges in the PDG, where I
are the instructions in a program, and E are the edges in its control
flow graph. This paper shows that it is possible to compute informa-
tion flow analyses using a different notion of implicit dependence,
which yields a number of edges linear on the number of defini-
tions plus uses of variables. Our algorithm computes these depen-
dences in a single traversal of the program’s dominance tree. This
efficiency is possible due to a key property of programs in Static
Single Assignment form: the definition of a variable dominates all
its uses. Our algorithm correctly implements Hunt and Sands sys-
tem of security types. Contrary to their original formulation, which
required O(I2) space and time for structured programs, we require
only O(I). We have used our ideas to build FlowTracker, a tool
that uncovers side-channel vulnerabilities in cryptographic algo-
rithms. FlowTracker handles programs with over one-million as-
sembly instructions in less than 200 seconds, and creates 24% less
implicit flow edges than Ferrante et al.’s technique. FlowTracker
has detected an issue in a constant-time implementation of Ellip-
tic Curve Cryptography; it has found several time-variant construc-
tions in OpenSSL, one issue in TrueCrypt and it has validated the
isochronous behavior of the NaCl library.

Categories and Subject Descriptors D - Software [D.3 Program-
ming Languages]: D.3.4 Processors - Compilers

General Terms Languages, Security, Experimentation

Keywords Information flow, implicit flows, sparse analyses, SSA

1. Introduction
Information flow analyses are used to prove properties such as
confidentiality and integrity in sensitive software. Since the pio-
neering work of Denning and Denning [14], these analyses have
been greatly expanded along theoretical and practical directions.
Today, there exist purely static [14, 21], purely dynamic [48] and
hybrid [20] ways to track the propagation of data along a program’s

code, and given the raising importance of security and privacy, such
techniques are likely to evolve even more.

Implementations of flow analyses must track explicit and im-
plicit propagation of information. There exists an explicit flow from
a variable u to a variable v if v is defined by an instruction that
uses u. Information runs implicitly from a predicate p to a variable
v if p is used in a branch whose outcome controls an assignment
into v, e.g.: “v = p ? 0 : 1”. Estimating the explicit flows of in-
formation in a program is standard practice in the compiler’s lit-
erature [14]. However, implicit flows are more elusive [40]. These
flows are usually approximated via Ferrante et al.’s notion of Con-
trol Dependences [16, p.323] – a methodology that finds wide use
in the literature [17–19, 36, 38, 41, 44, 46].

In Ferrante et al.’s work, explicit (e.g., data) and implicit (e.g.,
control) dependences are organized in a data-structured called the
Program Dependence Graph (PDG). This abstraction has been
originally designed to facilitate compilation tasks such as instruc-
tion scheduling and code parallelization [35]. Its use in the im-
plementation of information flow analyses, although provably cor-
rect [17, 19, 36, 38, 46], has a shortcoming: it may create O(|I| ×
|E|) implicit flow edges in the PDG, where I are the instructions
in a program, and E are the edges in its control flow graph. This
high complexity is not a purely theoretical limit: it is possible to
build actual worst-case scenarios, due to nests of do-while loops,
or due to the so called ladder graphs [12, Fig.3]. Even though there
are ways to compact control dependence edges [35], the quadratic-
time complexity cannot be avoided if necessary to list all of them.

In this paper, we show that it is possible to compute infor-
mation flow analyses using a different notion of implicit depen-
dence, which avoids the worst-cases of Ferrante et al.’s approach.
Whereas the idea of control dependence determines which instruc-
tions may, or may not execute, Denning&Denning-style [14] anal-
yses are more concerned on which values can influence other val-
ues. In Section 3 we demonstrate that the Static Single Assignment
(SSA) format [13], so popular in mainstream compilers, can lead to
a natural definition of implicit dependences. In Section 3.1 we in-
troduce an algorithm that determines all the implicit dependences
in an SSA-form program in a single traversal of its dominance tree.
We bound the number of implicit dependence edges in O(|V |) for
structured programs in SSA form, where V are the variables in the
program. For non-structured SSA-form codes, our upper limit is
O(|V | + |U |), where |U | is the number of uses of variables in the
program. This complexity is still linear on the program size, mea-
sured as number of definitions plus uses of variables.

To validate our claims, we provide an implementation of Hunt
and Sands flow-sensitive system of security types [21] in Sec-
tion 4.2. This theoretical framework has been designed for While,
a language common in information flow formalisms [21, 40]. We
can handle non-structured codes, in addition to the structured syn-
tax of While. Furthermore, by using SSA-form, we enable a sparse

analysis. An analysis is sparse if it associates information directly
with variable names [11]. In contrast, a dense analysis associates in-
formation with pairs formed by variables and program points. The
original work of Hunt and Sands fits this last category. Sparsity lets
us reduce the complexity to store typing information from quadratic
(on the number of variables or instructions) to linear.

This paper has practical contributions: in Section 5 we describe
FlowTracker, an LLVM-based [25] tool that uses our implemen-
tation of Hunt&Sands type-system to uncover time-related side-
channels in cryptographic algorithms. Timing attacks can be devas-
tating against insecure implementations. For example, inexpensive
timing attacks are very effective against naı̈ve square-and-multiply
implementations of RSA and Diffie-Hellman [24] or table-based
software implementations of AES [32]. Presently, there is no auto-
mated technique that supports the validation of the time invariant
behavior of compiled programs. This is a serious problem, as main-
stream compilers are not guaranteed to preserve the isochronous
behavior of algorithm whose source code has been validated against
timing attacks. Our flow analysis is directly incorporated in the
compiler and thus acts over its intermediate representation.

Section 5.1 reports experimental results obtained on widely
used implementations of cryptography contained in NaCl [8],
OpenSSL and GLS254 [31]. In particular, a known vulnerability
in OpenSSL 1.01e was found by FlowTracker, suggesting that it
could have been avoided before public discovery [47]. An issue
found by FlowTracker in the record-setting GLS254 implementa-
tion of a binary elliptic curve key agreement protocol pointed de-
velopers to update their code. Our tool is industrial quality: it scales
up remarkably well, as we show in Section 5.2. We have applied it
onto all the SPEC CPU 2006 integer programs. We could analyze
over 3.5 million assembly instructions in about 260 seconds.

2. Background
Information flow analyses try to infer properties of the data that
a program manipulates. Typical implementations of flow systems
associate program entities (variables, program points, branches,
instructions) with points in a semi-lattice that represents levels of
security. Without loss of generality, in this paper we assume that
this semi-lattice has three elements: {H,L,⊥}, such that H >
L > ⊥. The (commutative) meet operator is defined as H ∧
t = H,L ∧ ⊥ = L, where t ∈ {H,L,⊥}. This theoretical
framework is based on the work of Denning and Denning [14].
Their original information flow analysis is flow-insensitive. In other
words, the result of analyzing a sequence of commands C1;C2 is
the same as the result produced by the analysis of C2;C1. In terms
of implementation, flow-insensitiveness implies that the type of a
variable is determined by the most protective type that it receives
anywhere in the program text.

A flow-insensitive information analysis is imprecise, because it
does not consider the order in which variables are defined and used
within a program. To address this shortcoming, in 2006 Hunt and
Sands introduced a flow-sensitive system of security types [21]. In
this system, the type of a variable depends on the program point
where information is queried. Figure 1 illustrates this idea. Hence-
forth, we shall use • to denote a source of low-security information,
and ◦ to denote a source of high-security information. Variable z is
the only one initially bound to the type H in our program. In Hunt
and Sands approach, we have a typing environment Γ binding vari-
ables to types at each program point. A program point, in this case,
is any region between two instructions – a definition that includes
the edges of the program’s control flow graph.

If seen as an instance of the data-flow framework, Hunt and
Sands’ approach would be classified as a dense analysis [11, 30,
45]. A dense analysis associates pairs formed by variable names
and program points with information. In Figure 1 we show the re-

sult of Hunt-Sands type inference for our example: this result uses
O(V 2) space. In contrast, a sparse analysis binds information di-
rectly to variable names [39]. A data-flow analysis must be applied
on a program representation that presents the Single Information
Property, to be implemented sparsely [45]. This property exists if
the information that the analysis associates with a variable v is in-
variant at every program point where v is alive. Hunt and Sands
have shown the existence of a program representation that lets them
apply their type-system sparsely [21, Sec.7]. However, they did not
provide a way to implement such an analysis; instead, they have
shown that, given the result of their dense type-system, it is possi-
ble to derive a program representation that has the single informa-
tion property. In Section 4.2, we show that their type-system can be
implemented sparsely in programs on the Static Single Assignment
format. Figure 2 (a) contains an SSA-form version of our running
example, and the part (b) of the same figure shows a spoiler of our
result: each variable has a unique type throughout its entire exis-
tence. Thus, our solution uses O(V) space.

Tavares et al. [45] have provided a general approach to pro-
duce program representations that bestow the single information
property to data-flow analyses. Their technique suits analyses in
which all the information that contributes to the type of a variable
is available at a certain program point. Even though we claim that
the SSA form provides the single information property needed by
Hunt-Sands technique, Tavares et al’s approach cannot be directly
applied to implement that type-system. The problem in this case is
due to implicit flows. We say that information runs implicitly from
a predicate p to a variable v if p is used in a branch that controls the
definition of v [40]. Here, we take Ferrante’s definition of control
dependence [16]:

Definition 2.1 (Ferrante’87) A node y in a control flow graph is
control dependent on a node x if: (i) there exists a path, in the
control flow graph, from x to y, so that any node in this path is
post-dominated by y. (ii) x is not post-dominated by y. In this case,
we say that x controls the execution of y.

As an example of control dependence, the branch at `6 con-
trols the assignments at labels `7 and `8 in Figure 1. In Hunt-Sands
approach, the type of variable w at `8 is determined as the meet
of the types that z and p have at that point. This fact is unfor-
tunate: because variable p is not syntactically present in `8, we
cannot apply Tavares et al’s technique to generate a program rep-

l1: w = •; l2: x = •; l3: y = •; l4: z = ◦

l5: p = use(x)

l6: branch p l9

l7: y = use(y); l8: w = use(z)

l9: p = use(x); l10: branch p lexit

l11: z = use(z, w); l12: x = use(z); l13: z = use(x)

 p w x y z

 1-2: [⟘, L, ⟘, ⟘, ⟘]

 2-3: [⟘, L, L, ⟘, ⟘]

 3-4: [⟘, L, L, L, ⟘]

 4-5: [⟘, L, L, L, H]

 5-6: [L, L, L, L, H]

 6-7: [L, L, L, L, H]

 7-8: [L, L, L, L, H]

 8-9: [L, H, L, L, H]

 6-9: [L, L, L, L, H]

 9-10: [H, H, H, L, H]

10-11: [H, H, H, L, H]

11-12: [H, H, H, L, H]

12-13: [H, H, H, L, H]

 13-9: [H, H, H, L, H]

(a) (b)

Figure 1. (a) Program taken from Hunt and Sands [21, Fig.3] re-
written using our low-level notation. (b) Type of each variable
at each program point, as inferred using the flow-sensitive type-
system of Hunt and Sands.

z0w1

x1

z1w2

x2z2

z3

p1

l1: w0 = •; l2: x0 = •; l3: y0 = •; l4: z0 = ◦

l5: p0 = use(x0)

l6: branch p0 l9

l7: y1 = use(y0); l8: w1 = use(z0)

l10: [x1 = ϕ(x0, x2); z1 = ϕ(z0, z3)]

l11: p1 = use(x1); l12: branch p1 lexit

l13: z2 = use(z1, w2); l14: x2 = use(z2); l15: z3 = use(x2)

l9: [y2 = ϕ(y0, y1); w2 = ϕ(w0, w1)]

w0

x0

y0

p0

y1 y2

(a) (b)

Figure 2. (a) Control flow graph from Figure 1 in the SSA format.
(b) Flow graph that we build with the technique that we introduce
in this paper. Nodes marked gray would have the H type in Hunt-
Sands system [21].

resentation that “sparsifies” Hunt-Sands’ analysis. Usually, when
applied on low-level code, implementations of information flow
analyses resort to Ferrante’s algorithm [16], and its many improve-
ments [12, 22, 23, 35] to find control dependences. We claim that
this notion of control dependence, although correct (see, for in-
stance, Hammer and Snelting [17]), gives more information than
necessary to implement a flow-sensitive system of security types.

The program in Figure 3 illustrates this last point. This program
contains a nest with three do-while loops. Figure 4 shows two dif-
ferent graphs that represent the possible ways in which informa-
tion can flow between the variables in the code. These graphs con-
tain a vertex for each program variable. A solid edge from u to v
represents a data-dependence. Variable v is data-dependent on u
if v is defined by an instruction that uses u. Data-dependencies
create explicit flows of information. Dotted lines represent im-
plicit flows. In Figure 4 (a), we use Ferrante’s notion of control
dependence to identify these flows, following previous work [17–
19, 36, 38, 41, 44, 46]. Figure 4 (b) shows the implicit flows that
we find using the algorithm that we introduce in this paper. To dis-
tinguish these lines from Ferrante’s control dependence edges, we
shall call them implicit dependencies.

Our concept of implicit dependence is fundamentally different
than Ferrante et al.’s control dependences because we are interested
in tracking which values – not which instructions – a predicate
controls. As we will show in Section 3, a predicate controls the
value of the φ-functions used in an SSA-form program. These
special instructions let us join implicit flows. For instance, the label
`7 in Figure 3 is control dependent – Ferrante style – from the label
`9. However, the predicate p1, which determines the outcome of the
branch at `9, already determines the value of v5, a variable defined
by the φ-function at `6. Our algorithm will be able to explore this
chain of transitive dependences: p1 → v7 → v5 → v6; hence,
avoiding the need to keep track of edges such as p1 → v6.

The example of Figure 3 is an extreme case: nested sequences
of do-while loops are well-known to produce a quadratic number of
control dependence edges. The same is true for the so called “ladder
graphs” [12]. The algorithm that we introduce in this paper does not
suffer from these worst-case; nevertheless, for structured programs,
our implicit dependences and Ferrante’s control dependences tend
to yield similar number of edges, although we can find them faster,
as we demonstrate in Section 5.

l1: v0 = •

l2: v1 = ϕ(v0, v9)

l3: v2 = use(v1)

l4: v3 = ϕ(v2, v8)

l5: v4 = use(v3)

l6: v5 = ϕ(v4, v7)

l7: v6 = use(v5)

l8: p1 = use(v6)

l9: branch p1 l11

l11: p2 = use(v6)

l12: branch p2 l14

l14: p3 = use(v6)

l15: branch p3 l17

l10: v7 = use(v6)

l13: v8 = use(v6)

l16: v9 = use(v6)

l17: v10 = use(v6)

Figure 3. Control flow graph of three nested do-while blocks.

v1 v0

v2

v3

v4

v5

v6

v7 v8 v9 v10

p1

p2

p3 v1 v0

v2

v3

v4

v5

v6

v7 v8 v9 v10

p1

p2

p3

(a) (b)

Figure 4. (a) Flow dependences as defined by Ferrante et al.. (b)
Flow dependences as defined in this paper.

3. Information Flow in the SSA Graph
Basic Definitions. A control flow graph is a directed graph having
two special nodes Start and End, so that every node is reachable
from Start, no node reaches Start, every node reaches End, and
End does not reach any node. Vertices in a control flow graph are
called Basic Blocks. A blockB′ dominates another blockB if every
path from Start toB must go acrossB′. Dually,B post-dominates
B′ if every path from B′ to End must pass through B. We let
domB be the set of blocks that dominate block B, and pdomB

be the set of blocks that post-dominate B. If B′ ∈ domB , and for
any other B” ∈ domB , B” 6= B′ we have that B′ ∈ domB”,
then we say that B′ is the immediate dominator of B, written
idomB . We define the immediate post-dominator of B as the dual
of the immediate dominator, and let it be pdomB . The immediate
dominator and the immediate post-dominator of any basic block in
a control flow graph are unique [4]; thus, this two notions define
trees: the dominance tree and the post-dominance tree.
A Core Language. We shall define our algorithms on top of the
core language whose syntax is given in Figure 5. The semantics of
this language will be defined in Section 4. A program is a sequence

Programs (Prog) ::= B1, B2, . . . , Bn

Basic Block (B) ::= P, I∗, T
Labels (L) ::= {`1, `2, . . .}
Variables (V) ::= {v1, v2, . . .}
Terminators ::=
– Branch | ` : br(v, `x)
– Unconditional Jump | ` : jmp(`x)
φ-function (P) | ` : v = φ(v1, . . . , vn)
Assignments (I) ::=
– Low security data | ` : v = •
– High security data | ` : v = ◦
– Sensitive operation | ` : v = sink(v)
– Read operation | ` : v = use(v1, . . . , vn)

Figure 5. The syntax of our core language.

of basic blocks; basic blocks are sequences of instructions which
end with either a branch or an unconditional jump. Each instruction
is associated with a unique label. We recognize seven categories
of instructions. Two of them (br and jmp) change the program’s
control flow. The others (φ-functions and the assignments) transfer
information among variables. For simplicity, if the variable defined
by sink is not used, we shall not show it in our examples.

3.1 Construction of Implicit Dependence Edges
We represent the flow dependences in a program via the SSA
Graph [37]. The original definition of this data-structure is syntax-
directed: it contains one vertex for each variable in the program
text, and one edge from u to v if v appears on the left side of an
instruction that contains u on its right side. The graphs in Figure 4
are SSA-graphs in the original sense, if we consider the solid edges
only. The goal of this section is to augment these graphs with im-
plicit dependence edges. Following the example of Figure 4, we
shall produce the graph in the part (b). Figure 6 shows the algo-
rithm that we use to add implicit dependence edges to the SSA
graph. That algorithm, plus the notion of explicit dependences, lets
us present our definition of the SSA graph:

Definition 3.1 (SSA Graph) Given a program Prog written in the
language seen in Figure 5, we define its SSA graph G = (V,E)
as follows: V contains one vertex for each variable v in the text
of Prog. E contains an edge v → u if, and only if, u depends,
explicitly or implicitly, from v. We say that a depends on b explicitly
if b appears on the right side of the unique instruction that defines
a. We say that a depends on b implicitly if the Algorithm of Figure 6
creates an edge from a to b.

The algorithm in Figure 6 is written in Standard ML (SML).
Empty brackets, e.g., [], denote an empty list. Double colons, ::,
are list constructors. For instance, (h :: t) is a list with head h,
and tail t. The @ is list concatenation. Underline, , represents any
pattern. A construction such as “map (fn a => (lb, a) defList)” con-
verts every element “a ∈ defList” into the pair “(lb, a)”. We use
a single opcode ASG to represent the four different kinds of as-
signments in our language. Figure 6 contains the entire algorithm,
i.e., this program can be tested in an SML interpreter. We repre-
sent basic blocks as tuples. If a block B finishes with a conditional
branch, then it has the format “BR (Instructions, Predicate, Chil-
dren, pdomB)”. If B ends with an unconditional branch, then it
has the format “JMP (Instructions, Children)”. In either case, we
let Instructions be the operations in the body of B and Children
be the blocks that B dominates. If B is of the BR variety, then we
let Predicate be the variable used in its branch. Figure 7 shows the
data-structure that represents the program first seen in Figure 2.

The function visit, seen in Figure 6 goes down a program’s
dominance tree, keeping track of the last predicate seen during this
traversal. By predicate we mean the variable pred used in a condi-

datatype Instruction =
 ASG of string * string list
 PHI of string list * string list list

datatype DomTree =
 BR of Instruction list * string * DomTree list * DomTree
 | JMP of Instruction list * DomTree list

fun link [] _ = []
 | link _ "" = []
 | link ((ASG (a, _)) :: insts) lb = (lb, a) :: link insts lb
 | link ((PHI (defList, _)) :: insts) lb =
 (map (fn a => (lb, a)) defList) @ link insts lb

fun visit (JMP (instructions, [])) pred =
 link instructions pred
 | visit (JMP (instructions, [child])) pred =
 link instructions pred @ visit child pred
 | visit (BR (instructions, new_pred, children, ipdom)) pred =
 let
 fun visit_every [] = []
 | visit_every (child::rest) =
 if child = ipdom
 then visit child pred @ visit_every rest
 else visit child new_pred @ visit_every rest
 in
 link instructions pred @ visit_every children
 end

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
24
25
26
27

Figure 6. The SML/NJ version of the basic algorithm that inserts
implicit dependence edges in the SSA Graph.

val t_exit = JMP ([], [])
val t13_15 = JMP (
 [ASG ("z2", ["z1", "w2"]), ASG ("x2", ["z2"]), ASG ("z3", ["x2"])], [])
val t10_12 = BR ([PHI (["x1", "z1"], [["x0", "x2"], ["z0", "z3"]]),
 ASG ("p1", ["x1"])], "p1", [t13_15, t_exit], t_exit);
val t9_9 = JMP ([PHI (["y2", "w2"], [["y0", "y1"], ["w0", "w1"]])], [t10_12])
val t7_8 = JMP ([ASG ("y1", ["y0"]), ASG ("w1", ["z0"])], [])
val t1_6 = BR ([ASG ("w0", []), ASG ("x0", []), ASG ("y0", []),
 ASG ("z0", []), ASG("p0", ["x0"])], "p0", [t7_8, t9_9], t9_9);

1
2
3
4
5
6
7
8
9

Figure 7. The data-structure that represents the program seen in
Figure 2. To expression (visit t1 6 ’’) invokes the algorithm
of Figure 6 onto this data-structure.

tional branch. At a basic blockB, visit invokes the function link
to create an edge from pred to every variable defined in B. This
invocation happens at lines 16, 18 and 26 of Figure 6. After inspect-
ing a block B that ends in an instruction br(new pred, `), visit
is invoked recursively over every children of B in the dominance
tree with new pred as the current predicate, unless this children is
the immediate post-dominator of B. If this last case happens, then
new pred is not used to replace pred as the current predicate. The
application of visit on the structure seen in Figure 7 yields the
five dashed edges that we have outlined in Figure 2 (b).

3.2 Structural Properties of the Algorithm
We define the notion of influence region as follows:

Definition 3.2 (Influence Region) The Influence Region IRB of a
block B that ends with a branch is a set of basic blocks. It contains
block B′ if, and only if: (i) B ∈ domB′ ; (ii) B′ /∈ pdomB; (iii)
there is no B” such that B” ∈ pdomB and B” ∈ domB′ .

The immediate influence region of B is a subset of its influence
region, which we denote by IIRB , and define as:

Definition 3.3 (Immediate Influence Region) The immediate in-
fluence region IIRB of a block B contains blocks B′ if, and only

A

B

E

C

G

D

A

B

E

C G

D

F

F

(a) (b)

Figure 8. (a) Control flow graph. Each box represents a basic
block. (b) Dominance tree.

if: (i) B′ ∈ IRB; and (ii) there is no block B”, B” 6= B, such that
B′ ∈ IIRB”. We say that B is the head of IIRB .

Figure 8 illustrates these definitions. IRA = {B,C,D,E, F}
and IRB = {D}. Block C does not have an influence region, be-
cause it does not terminate with a conditional branch. We have that
IIRA = {B,C, F} and IIRB = {D}. The notions of influence
region and immediate influence region have geometrical interpre-
tations. The influence region of a block B is every node that is
reachable from B on a traversal of the program’s dominance tree,
stopping at any node in pdomB . The immediate influence region
of B is given by a traversal of the dominance tree, again starting at
B, and stopping at any node that post-dominatesB, and also at any
nodeB′ that ends in a branch (inclusive, e.g.,B′ ∈ IIRB as long as
B′ /∈ pdomB). The algorithm from Figure 6 links a predicate p to
the variables defined within the immediate influence region of the
block where p is used.

Our algorithm from Figure 6 creates a chain of transitive depen-
dences that links a predicate with all the variables whose assign-
ment this predicate controls. However, this statement is only true
if we guarantee that every predicate is defined immediately before
being used in a branch. To ensure this property it suffices to re-
place every conditional test like “br(v, `)” by two instructions in
sequence: “v′ = v; br(v′, `)”, where v′ is a fresh variable which
will be used only at the branch. This transformation happens in
constant time per branch; hence, it is linear on the number of con-
ditionals that exist in a program. Notice that the programs that we
have seen in Figures 1, 2 and 3 are already in this format, i.e., every
predicate is defined immediately before the branch where it is used.
Theorem 3.4 states the key invariant property of our algorithm.

Theorem 3.4 If a basic blockB ends with a conditional “br(p, `)”,
then function visit creates a chain of implicit dependences linking
p to every variable defined within IRB .

3.3 Dealing with Non-Structured Codes and Codes in
Non-Conventional SSA Form

Due to reasons that we discuss in Section 4.1, our algorithm must
create a chain of dependence edges between a predicate p, used in a
branch such as br(p, `), and every variable defined by a φ-function
whose outcome p controls. This property will not hold if the ar-
guments of a φ-function are not defined in the influence region of
p. Such situation may happen, for instance, in non-structured pro-
grams, and in programs in non-conventional static single assigment
(CSSA) form.

Following Ferrante et al. [16], a Hammock Region within a
control flow graph is the set of blocks between a branch and its
post-dominator. We shall say that a program is non-structured if it
contains at least one hammock region R that can be entered from
different blocks outside R. For instance, the program in Figure 9
(a) is non-structured. A program P is in Conventional Static Single
Assignment (CSSA) form if it does not contain two φ-related

l1: x0 = •

l2: p0 = ◦

l3: br p0 l9

l4: x2 = ϕ(x0, x1)

l5: ... = sink(x2)

l6: x1 = •

l7: p1 = •

l8: br p1 l4

l9: x3 = ϕ(x0, x1)

l10: ... = sink(x3)

(a) (b) l1: x0 = •

l2: x1 = •

l3: p0 = ◦

l4: br p0 l7

l5: x2 = ϕ(x0, x1)

l6: ... = sink(x2)

l7: jmp(l5)

Figure 9. (a) Non-structured control flow graph. (b) Program in
non-conventional SSA form.

l1: x0 = •

l2: p0 = ◦

l3: br p0 l9

l4: x2 = ϕ(x0', x1')

l5: ... = sink(x2)

l6: x1 = •

l7: p1 = •

l8: br p1 l4

l9: x3 = ϕ(x0", x1")

l10: ... = sink(x3)

(a) (b) l1: x0 = •

l2: x1 = •

l3: p0 = ◦

l4: br p0 l7

l5: x2 = ϕ(x0', x1')

l6: ... = sink(x2)

l7: jmp(l5)

 x0' = x0

x0' = x0 x0" = x0 x1' = x1 x1" = x1
x1' = x1

Figure 10. Programs from Figure 9, after live range splitting à la
Sreedhar [43].

variables simultaneously alive at the same program point. Quoting
Pereira and Palsberg [34], “two variables, v1 and v2, are φ-related
in an SSA form program if either (i) they are used in the same
φ-function, as parameters or definition, or (ii) there exists a third
variable v3, so that v1 and v2 are φ-related to v3.” The program in
Figure 9 (b) is not in CSSA form, because φ-related variables x0

and x1 overlap.
The algorithm in Figure 6 will not create any implicit depen-

dence edge in either program of Figure 9. This fact is unfortunate,
for in both cases the predicates p0 and p1 control de outcome of
the φ-functions. There are two ways to deal with this fact: we can
change our algorithm to add control edges between a predicate p
and the φ-functions that exist at the Dominance Frontier (for the
meaning of Dominance Frontier, see Definition 3.5) of the block
where p is used; or we can split live ranges, following the approach
proposed by Sreedhar et al.’s [43] to convert an SSA-form pro-
gram to the CSSA representation. We use this last strategy, because
it simplifies our correctness proofs.

The live range of a variable v is the set of program points where
v is alive. In an SSA-form program, v is alive at every point that
is reachable from a backwards traversal of this program’s CFG,
starting at a site where v is used, and stopping at the – unique – site
where v is defined [4, ch.15]. To implement our live range splitting
strategy, we: (i) break critical edges1, and (ii) split live ranges of
the arguments of φ-functions at the predecessors of the node where
these φ-functions are located. We split the live range of a variable v

1 A CFG edge is critical if it links a basic block with multiple successors to
a basic block with multiple predecessors.

at a CFG edge `i → `j by (i) inserting a copy v′ = v at the edge, v′

being a fresh variable name; (ii) renaming every use of v dominated
by `j to v′ and (iii) inserting φ-functions in the program to re-create
the SSA property. Because we use Sreedhar et al.’s method [43],
step (iii) is not necessary. Figure 10 illustrates this process. We split
the live ranges of those variables that we call escaping; we define
escaping variables as follows:

Definition 3.5 (Escaping Variable) We say that v escapes the in-
fluence region of a branch “`b : branch(p, `)”, located at label `b
if, and only if v is alive at an edge `o → `d, such that: (i) `o is
dominated by `b; and (ii) `d is not dominated by `b. In compiler’s
jargon, we say that edge `o → `d is in `b’s dominance frontier.

The live range splitting strategy that we have just presented
enables our core algorithm to establish dependences between the
predicate p that controls a branch, and every φ-function whose
outcome may be controlled by such a branch. We state this property
formally in Theorem 3.6.

Theorem 3.6 After live range splitting, we ensure that the core
algorithm creates a path of dependence edges between a predicate
p used at “branch(p, `′)”, and every variable defined by a φ-
function whose outcome this branch controls.

Complexity. Function visit creates at most one implicit depen-
dence edge leading to any vertex in the SSA-graph of a program.
This result lets us put a complexity bound on the space require-
ments of the algorithm that we introduce in this paper. Our com-
plexity results require variables in the SSA format. SSA-form pro-
grams contain more variables than their original versions; however,
this growth is still linear [42]. Sreedhar’s live range splitting strat-
egy, which we use to deal with non-structured codes, creates a new
variable for each argument of a φ-function. Hence, visit might
create one implicit dependence edge per variable in the SSA-form
program, and one such edge per argument of a φ-function. This is
still linear on the size of the original program, measured as the num-
ber of definitions and uses of variables. Furthermore, Benoit et al.
have shown that a variable will rarely be used more than five times
in real-world benchmarks [10]. Thus, our algorithm is likely to be
linear on the number of program variables in practice, even for non-
structured codes. Notice that we are using the naı̈ve method intro-
duced by Sreedhar et al. (Method I) [43, Sec4.1]. In the same paper,
they have discussed two other ways to split live ranges (Method II
and III), which introduce fewer new variable names.

4. Semantic Properties
In this section, we discuss the guarantees that our algorithm pro-
vides to its users. To this end, Figures 11, 12 and 13 define the
semantics of the language seen in Figure 5. The relation i−→ (Fig-
ure 12) describes the semantics of data and arithmetic operations,
and the relation e−→ (Figure 13) gives us the semantics of operations
that change the program’s control flow. State is given by a triple:
• pc: the program counter, which indexes a vector I of instruc-

tions. This element is only used in the relation e−→.
• S: the stack of local variables, which binds names to values. The

possible values are either • or ◦. We define t so that • t • = •
and ◦ t x = x t ◦ = ◦ for any x.
• P : the set of active predicates. We say that a predicate p is active

if the program flow is traversing the influence region of a basic
block that ends with br(p, `).

Again, we let the double colon (::) denote list construction. As-
signments add a new binding on top of the stack S. Whenever
necessary to retrieve the value x associated with a variable v, we
scan the stack, from top towards bottom, looking for a pair (v, x).
This search is performed by the function lookup, seen in Figure 11.

lookup([(v, x) :: S], v)⇒ x
v′ 6= v lookup(S, v)⇒ x

lookup([(v′, x′) :: L], v)⇒ x

v ∈ Sv

lookupFirst([(v, x) :: S], Sv)⇒ x

v′ /∈ Sv lookupFirst(S, Sv)⇒ x

lookupFirst([(v′, x′) :: S], Sv)⇒ x

∀vi ∈ P, lookup(S, vi) = xi x1 t . . . t xn = x

join(S, P)⇒ x

Figure 11. Stack management library.

P ` 〈v = ◦, S〉 i−→ (v, ◦) : S

P ` 〈v = •, S〉 i−→ (v, join(S, P)) : S

lookup(S, v′)⇒ • join(S, P) = •

P ` 〈v = sink(v′), S〉 i−→ (v, •) : S

lookupFirst(S, {v1, v2})⇒ x

P ` 〈v = φ(v1, v2), S〉
i−→ (v, x) : S

lookup(S, vi)⇒ xi x = x1 t . . . t xn t join(S, P)

P ` 〈v = use(v1, . . . , vn), S〉
i−→ (v, x) : S

Figure 12. Semantics of data and arithmetic operations.

I[pc] = jmp(`) I ` 〈`, S, P 〉 e−→ 〈S′, P ′〉
I ` 〈pc, S, P 〉 e−→ 〈S′, P ′〉

I[pc] = br(v, `) I ` 〈`, S, P ∪ {v}〉 e−→ 〈S′, P ′〉
I ` 〈pc, S, P 〉 e−→ 〈S′, P ′〉

I[pc] = br(v, `) I ` 〈pc+ 1, S, P ∪ {v}〉 e−→ 〈S′, P ′〉
I ` 〈pc, S, P 〉 e−→ 〈S′, P ′〉

I[pc] = pdom(P”) I ` 〈pc+ 1, S, P \ P”〉 e−→ 〈S′, P ′〉
I ` 〈pc, S, P 〉 e−→ 〈S′, P ′〉

P ` 〈I[pc], S〉 i−→ S′ I ` 〈pc+ 1, S′, P 〉 e−→ 〈S”, P”〉
I ` 〈pc, S, P 〉 e−→ 〈S”, P”〉

Figure 13. The operational semantics of instructions that change
the program’s flow of control. Conditional branches are non-
deterministic: any outcome is valid to our purposes.

When interpreting a φ-function such as v = φ(v1, v2), we search
the stack for the first occurrence of any binding containing either v1

or v2. This action is implemented by the function lookupFirst, also
seen in Figure 11. Search for the first parameter of a φ-function is
correct for strict programs, i.e., programs in which every variable
is defined before being used. This is one of the core properties of
SSA-form programs, as stated by Zhao et al [49]. For simplicity,
we shall assume that every basic block contains at most one φ-
function at its beginning. To handle multiple φ-instructions, Zhao
et al. search for a list of arguments, instead of just one.

To model the effects of ` : br(v, `′) over assignments that
happen inside the influence region of ` we use the environment
of active predicates P . Whenever we traverse that branch, we add
v to P . The effects of v cease at pdom`, for then we are back into
a program region that will necessarily be traversed if we visit `,
independent on the value of v. Contrary to the While programming
languages used in standard security type systems [21, 40], our
toy language does not offer syntax to indicate post-dominance.
Thus, we shall assume a special instruction `p : pdom(P ′) at label
`p = pdom`. We let P ′ be the set of variables used in branches that
are post-dominated by `p. As we see in Figure 13, this instruction
removes from the set of active predicates every variable in P .

4.1 From Dependences to Types
If a program I , in a state 〈S, P 〉 cannot take a step, then we say that
this program is stuck. There are several ways in which programs
in our language can be stuck. Our abstract machine is stuck if: (i)
we have a program counter pointing to a non-existing instruction
(see Figure 13); (ii) we have the use of a non-defined variable (see
Figure 12); or (iii) sink receives an argument bound to the value ◦.
Because we are not interested in malformed control flow graphs, we
shall rule out (i). Zhao et al. [49] have shown that (ii) cannot happen
in strict SSA-form programs, i.e., programs in which any use of a
variable is dominated by its definition. Programs that do not present
conditions (i) or (ii) are said to be well-formed. Henceforth, we will
only consider well-formed programs. Thus, we shall assume that
only condition (iii) can stop our abstract machine from progressing.
Notice that we do not model termination in our semantics: the
existence of an instruction halt is immaterial to our formalization.
The explicit dependences, plus the implicit dependences created by
the procedure seen in Figure 6 lets us define a way to assign types
to variables:

Definition 4.1 (Types as Reachability in the SSA Graph) Let
Prog be a program, G = (V,E) its SSA graph, and V◦ be the set
formed by the variables v defined as v = ◦ in Prog. If v ∈ V◦, then
v has typeH . The type of a variable u reachable from any variable
v ∈ V◦ through a traversal of G is H; otherwise, it is L.

Notice that Definition 4.1 is dealing with a security lattice of
height two. We could use more expressive lattices by adapting
Definition 4.1 accordingly, e.g., the type of a variable v is the meet
over all paths of the types of all the variables that reach v. We
shall restrict the discussions in the rest of this section to the simpler
lattice. Theorem 4.2 states our notion of non-interference.

Theorem 4.2 A variable of type L cannot be assigned a value ◦.

Progress follows from Theorem 4.2:

Corollary 4.3 [Progress] If a well-formed program does not con-
tain an instruction v′ = sink(v) such that v has type H , then this
program cannot be stuck.

Corollary 4.3, e.g., Progress, means that a sink instruction will
not receive a value of type H . On the other hand, it says nothing
about the execution of sink instructions within program regions of
high security level. As pointed out by Russo and Sabelfeld [40],
events like this can also leak sensitive information. Fortunately, it
is easy to adapt our semantics to model this kind of indirect leaking.
Every sink operation defines a variable, e.g., ` : v = sink(v′). The
security level at ` is given by the type of v.

4.2 Equivalence with Hunt-Sands Type-System
Our notions of explicit and implicit dependences gives us an ef-
ficient way to implement Hunt and Sands [21] type-system. To
support this statement, Figure 14 provides a translation of the

CS ⟦skip⟧ → ; CS ⟦vs := E!⟧ → I; vs = use(x)

CS ⟦D1; D2⟧ CS ⟦
 if E!

 (D1; !' = !1)
 (D2; !' = !2)
⟧

I;
br(x, l);1
CS ⟦D1⟧;
CS ⟦D2⟧;
!' = "(!1, !2)

l0:

CS ⟦!' = !0; while E! (Dn; !' = !n) ⟧
l0: !' = "(!1, !2); I; br(x, ln); CS ⟦Dn⟧; jmp(l0); ln:

CS ⟦D1⟧; CS ⟦D2⟧
→t

t t

→t

→t

Figure 14. Translation of the high-level While language with fixed
types [21, Fig.4] to our low-level language. We translate every
expression EΓ as a sequence of instructions I that produces a final
result into a variable x.

While language into our core language seen in Figure 5. Our start-
ing point is the version of While with fixed types that Hunt and
Sands have defined in Section 7 of their work. As Hunt and Sands
have speculated [21, Sec7.6], this version is very close to the Static
Single Assignment form. Thus, we perform the translation by join-
ing, via φ-functions, the variables that they have defined at the end
of control flow constructs. Hunt and Sands have not defined the se-
mantics of While; however, Russo and Sabelfeld have done it pos-
teriorly [40]. Hence, in order to show the correctness of the trans-
lation, we use this latter formalization. In Theorem 4.4, we let the
relation r−→ represent the steps defined by Russo and Sabelfeld for
their version of the While language.

Theorem 4.4 Let C be a statement of While such that CSJCK t−→
I , and let S be a stack. We have that if 〈C, S〉 r−→ 〈stop, S′〉 then
there exists an active set P ′ such that I ` 〈`0, S, {}〉

e−→ 〈S′, P ′〉.

We can show that our algorithm, when applied on the low-
level language that we obtain via the compiler seen in Figure 14,
correctly implements Hunt & Sands typing rules. We formalize this
statement in Theorem 4.5. Without loss of generality, we assume a
type-system with only two types, e.g., H and L. To generalize this
type-system to higher semi-lattices, we let the type of a variable v
be the meet-over-all-paths of the types of every variable that can
influence v. Again, variable u influences variable v if, and only if,
there exists a path in the SSA graph from u to v.

Theorem 4.5 Let C be a statement of While such that CSJCK t−→
I . The Hunt & Sands type-system assigns variable vx ∈ C a type
H , if and only if, vx has type H according to definition 4.1.

5. FlowTracker
To validate all the ideas discussed in this paper, we have material-
ized them into FlowTracker, a flow-sensitive, interprocedural static
analyzer. This software can be adapted to track different types of
information: the user is free to define sources and sink operations.
Interprocedurality is implemented through summary edges, follow-
ing a description by Hammer and Snelting [17]. Since March of
2014, we have been using FlowTracker to detect time-based side-
channels in crypto implementations. Following Agat [2], we rec-
ognize two types of time-based information leaks. In the first cate-
gory, we group disclosures that happen when secret data determine
which parts of the program are executed. The second category en-
compasses code in which memory is indexed by sensitive informa-
tion. Figure 15 provides an example of each kind of vulnerability.
Our example consists of a simple function, which receives a pass-
word encoded as an array of characters pw, and tries to match this
string against another array in, which represents the input provided

by an external user. In this example, we regard the user input as ma-
licious, for it could have been tainted by an adversary.
Leaks due to control flow. The program in Figure 15 (a) contains
a time-based information disclosure vulnerability. In this example,
an attacker can time how long it takes for function isDiffVul1 to
return. An earlier return indicates that the match at line 4 failed in
one of the first characters. By varying, in lexicographic order, the
contents of array in, the adversary can reduce the complexity of
the secret search problem from exponential to linear.
Leaks due to cache behavior. The program in Figure 15 (b) is
an attempt to remove the time-based side-channel from the pro-
gram seen in Figure 15 (a). Function isDiffVul2 uses a table to
check if the characters used in the sensitive password, .e.g., array
pw match those present in the input array in. If all the characters
in both strings appear in the same order, the function returns true,
otherwise it returns false. The secret pw does not control any branch
in function isDiffVul2; however, this code still presents a timing-
based leak. Data belonging to the password is used to index mem-
ory at line 6 of our example. Depending on the relative distance be-
tween the characters of pw, cache misses may happen. In this case,
an adversary can obtain information about how spaced out are the
alphanumeric elements present in pw. The feasibility of this kind of
attack has been demonstrated in previous work [6].
Removing the time-based side-channels. Figure 16 shows a sani-
tized version of our string matching example. In this case, indepen-
dent on the secret value stored in pw, function isDiffOk has the
same control flow. In other words, each path within the program
will be traversed the same number of times, and in the same order,
regardless of the input. Furthermore, function isDiffOk will index
the same blocks of memory, always in the same order, and always
with the same strides between successive accesses, independent on
its inputs. In this case, we say that secret information does not in-
fluence neither control flow, nor memory indexation. FlowTracker
detects the two vulnerabilities seen in Figures 15 (a) and (b), and
reports no false positive for the program shown in Figure 16.
Compiler Induced Leaks. As observed in Section 1, a compiler
may introduce time-based side channels when operating on source
code thought to be isochronous. A typical example is due to the
short-circuiting operators from C and Java. One could be tempted
to believe that the code in Figure 17 (a) is time-invariant. However,
the compiler will translate this code into the version seen in the part
(b) of the same Figure. Thus, we believe that techniques that detect
time-variant behaviour at the source code level [2], although very
useful during the process of software development, must be com-
plemented by validation at the compiler level. For instance, quoting
Agat [2, p.51]: “A minor oversimplification in our semantics is that
it neglects the unconditional jumps made in the machine code that a

int isDiffVul2
 (char *pw, char *in) {
 int i;
 int isDiff = 0;
 char array[128] = { 0 };
 for (i=0; i<7; i++) {
 array[pw[i]] += i + 1;
 }
 for (i=0; i<7; i++) {
 array[in[i]] -= i + 1;
 }
 for (i=0; i<128; i++) {
 isDiff |= array[i];
 }
 return isDiff;
}(b)

1

2
3
4
5
6
7
8
9
10
11
12
13
14
15

int isDiffVul1
 (char *pw, char *in) {
 int i;
 for (i=0; i<7; i++) {
 if (pw[i]!=in[i]) {
 return 0;
 }
 }
 return 1;
}

1

2
3
4
5
6
7
8
9

(a)

Figure 15. (a) Program whose control flow is controlled by secret
information. (b) Program that may leak timing information due to
cache behavior.

#define F(i) diff |= pw[i] ^ in[i]

int isDiffOk(char *pw, char *in) {
 int diff = 0;
 F(0); F(1); F(2); F(3); F(4); F(5); F(6); F(7);
 return (1 & ((diff - 1) >> 8)) - 1;
}

1
2
3
4
5-12
13
14

Figure 16. Isochronous implementation of functions isDiffVul1
and isDiffVul2 in Figure 15.

int eq(char *p, char *q) {
 a0 = (p[0] == q[0]);
 a1 = (p[1] == q[1]);
 a2 = (p[2] == q[2]);
 return a0 && a1 && a2;
}

(a)

int eq(char *p, char *q) {
 if (p[0] != q[0])
 return false;
 else if (p[1] != q[1])
 return false;
 else
 return p[2] == q[2];
} (b)

Figure 17. (a) Isochronous program. (b) Time variant code.

compiler produces for if- and while- commands”. Our lower-level
approach does not suffer from such limitation. Notice that Flow-
Tracker is more restrictive than the work of Agat, because it verifies
that “there is no branching or memory indexation on high-security
data”. We chose this more restrictive approach because Aciicmez
et al. [1] has shown that allowing balanced branches as Agat does
still gives room for branch prediction attacks.

5.1 Effectiveness
We have evaluated the effectiveness of FlowTracker in two different
ways: by outsourcing it through an on-line server (http://cuda.
dcc.ufmg.br/flowtracker/) and by applying it on well-known
cryptographic libraries such as NaCl v20110221, TrueCrypt or
parts of OpenSSL. Concerning the first approach, we have made
FlowTracker available since March of 2014. From the iteration
with external users we got several benchmarks, ranging from trivial
programs, such as the one in Figure 16, to complex code, such as
the X25519 curve-based key agreement used in LibSSH [7] or the
benchmarks of Eldib et al. [15]. FlowTracker correctly reported
time-based leaks in all the examples where they were expected to be
found, and did not trigger any warning in the cases where warnings
were not expected. Some of these results, such as those obtained on
the QMS benchmarks [15] have not been reported before.

We have applied FlowTracker on popular implementations of
cryptography, starting from NaCl, because of its constant-time fea-
tures [8]. NaCl contains implementations of several cryptographic
primitives, including hash functions, message authentication codes
(MACs), authenticated encryption, digital signatures and public
key encryption. Besides the obvious secret and private keys, hash
function inputs and encryption plaintext messages were conserva-
tively marked as sensitive. As expected, the isochronous properties
of the entire library were formally verified and no vulnerabilities
were found, confirming previous results [3]. The analysis spanned
12 reference implementations in the C programming language, en-
compassing 45 different functions and over 6,000 lines of code:
SHA2-based HMAC, Salsa20 stream cipher variants, Poly1305 au-
thenticator, Curve25519 [7] and their combinations.

We have applied FlowTracker on several OpenSSL functions.
Contrary to NaCl, in this case we got several warnings. Due to
the multiple interfaces for the same primitives, the analysis was
restricted to the security-critical operations required by RSA and
Elliptic Curve Cryptography, namely modular exponentiation and
scalar multiplication. FlowTracker has reported 1,217 warnings in
6 OpenSSL binary/prime elliptic curve scalar multiplication and

Montgomery exponentiation functions. An example of vulnera-
ble implementation was scalar multiplication by Montgomery lad-
dering in a binary curve (function ec GF2m montgomery point
multiply() in file ec2 mult.c) from OpenSSL version 1.0.1e.
The side-channel susceptibility of this code was recently demon-
strated by a Flush+Reload cache-timing attack [47], corroborating
our findings. Running FlowTracker in the newer 1.0.2 version veri-
fied that the changes applied by the OpenSSL team solved the spe-
cific vulnerability, but 82 vulnerable subgraphs still remain in the
function, despite the natural side-channel resistance of the underly-
ing algorithm [26]. Thus, we claim that integrating FlowTracker in
the development process would have detected the vulnerability and
prevented release in production-ready code.

We have not forced time-based attacks on all the warnings is-
sued by FlowTracker – this kind of verification is too time con-
suming. However, even a warning that cannot be exploited in prac-
tice already indicates poor coding patterns. For instance, we have
applied FlowTracker onto the GLS254 implementation [31]. Flow-
Tracker pointed 4 issues in the code, but manual inspection did
not suggest any clear attack vector. More precisely, a critical loop
inside the scalar recoding procedure depends on the precision of
part of the private key. This precision is fixed with overwhelming
probability due to a mathematical result, but this fact cannot be de-
termined automatically by our tool. After reporting FlowTracker’s
warning, the code was fixed and no information leaks are reported
in the most current version of the software. Moreover, even if no
direct vulnerability was found, the constant-time property in the
updated version is now much easier to verify by manual inspection.

5.2 Scalability
To probe the efficiency and the scalability of FlowTracker, we have
applied it onto the SPEC CPU 2006 programs, and in the C pro-
grams available in the LLVM test suite. These programs are not
used in crypto applications. However, they are large enough to give
us an idea on: (i) how much time FlowTracker needs to build the
dependence graph of large programs; (ii) how much memory Flow-
Tracker requires, and (iii) what is the relation between the size of
programs and the size of their SSA graphs. Similar experiments
would not be as meaningful if run on the crypto algorithms of Sec-
tion 5.1, because those programs are much smaller. The numbers
that we report in this section have been obtained on an Intel I7 with
a 2.20GHz clock, eight cores, and 8GB of RAM. Each core has a
6,144KB cache. Our machine uses Linux Ubuntu 12.04.

Figure 18 shows the size of the SSA graphs produced for SPEC.
We have roughly 1.5x more data dependence edges than program
variables and about 2.5 variables per control dependence edge. Our
algorithm is 7% faster than Ferrante et al.’s. These numbers are the
average of three separate runs, and include the time to find implicit
and explicit dependence edges. The latter is the same for both
algorithms. Runtime variance is negligible, and we omit it. The
time to build the dominance and post-dominance trees is a small
fraction of the time necessary to build the graphs. This happens
because the algorithms that build those trees work at the granularity
of basic blocks, whereas the algorithms that build the SSA graphs
work at the granularity of instruction operands. In other words, they
visit each operand of each instruction in the program.

Figure 18 indicates that our graphs are sparse, i.e., the num-
ber of edges that they have is linearly proportional to the num-
ber of nodes. We have performed experiments to demonstrate this
last fact. To this end, we have applied FlowTracker on the 50
largest benchmarks in the LLVM test suite. The smallest program
(GlobalDataFlow-flt) has 9,124 LLVM instructions, and the
largest (consumer-typeset) has 261,492. Figure 19 summarizes
this experiment. The coefficient of determination between time and
size of dependence graph is 0.97, which indicates strong linear cor-

Bench Vars Dep Time FDep FT D/PD
perl 434 239 19.3 338 22.0 0.8/0.7
bzip2 27 21 1.1 25 1.1 0.1/0.1
mcf 4 1 0.1 2 0.1 0.0/0.0
gobmk 234 102 3.3 137 3.3 0.1/0.1
hmmer 108 53 1.1 71 1.1 0.2/0.1
sjeng 43 22 0.5 34 0.5 0.1/0.1
libq 9 3 0.1 4 0.1 0.0/0.0
h264r 234 111 5.3 140 5.3 0.3/0.3
omnet 161 32 1.2 39 1.2 0.3/0.3
astar 13 5 0.1 7 0.1 0.0/0.0
xalanc 1,038 261 48.9 301 46.6 2.1/1.9
gcc 1,249 912 181.8 1,208 203.6 2.0/1.9
Total 3,560 1,767 262.6 2,311 281.5 6.8/6.2

Figure 18. How FlowTracker scales up in the SPEC benchmark
suite compared to the classic algorithm of Ferrante et al. [16]. Vars
(×1, 000): number of variables in each program (equals the num-
ber of vertices in the SSA graph); Dep (×1, 000): number of con-
trol dependence edges that FlowTracker creates; Time (sec): Flow-
Tracker’s runtime; FDep (×1, 000): number of control dependence
edges created by Ferrante et al.; FT (sec): Ferrante et al.’s runtime.
D/PD (sec): time to build dominance and post-dominance trees.
Ferrante’s algorithm uses only post-dominance; we use both.

1.E-‐01	

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

Number	 of	 Instruc:ons	 Data	 Edges	 Control	 Edges	 Time	

Figure 19. Size of programs (Number of Instructions) vs size of
SSA graph (number of control and data dependence edges) vs time
(sec) to build the SSA graph. Each tick in the X-axis is a different
benchmark. Benchmarks are sorted by number of instructions.

relation. In total, these fifty programs contain 2,044,883 instruc-
tions, in their LLVM intermediate representation. Our SSA graphs
contain a total of 4,718,821 data dependence edges, and 1,730,219
control dependence edges. The total time to build all these graphs
was 133.51 seconds. This number includes the time to parse the
programs, build their dominance and post-dominance trees, plus
the time to generate the SSA graph.

Both algorithms, Ferrante et al.’s and ours, produce the same
number of data dependence edges; however, we generate fewer
edges to track implicit dependences. Figure 18 shows that we have
produced 24% less implicit dependence edges than Ferrante et al.
for the programs in SPEC CPU 2006. Furthermore, our algorithm
does not suffer from some pathological cases that are possible in
Ferrante et al.’s. These worst-case scenarios are caused, for in-
stance, by nests of repeat loops, as seen in Figure 3. Ladder con-
trol flow graphs also produce many control dependences in pro-
grams [12]. Figure 20 demonstrates this fact. We have generated
programs with varying number of syntactic features, e.g., steps in
ladder CFGs, or nests of repeat loops, and applied both algorithms
onto these programs. Whereas the number of edges that we create
grows linearly, Ferrante et al.’s algorithm shows quadratic behav-
ior.

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	
R+Flow	 R+Ferrante	 L+Flow	 L+Ferrante	

Figure 20. Comparison between our algorithm and Ferrante et
al.’s for nests of repeat loops and ladder CFGs. R: repeat loops;
L: ladder graphs; Flow: FlowTracker’s algorithm; Ferrante: the
algorithm seen in [16]. Y-axis indicates number of implicit depen-
dence edges. X-axis indicates either number of nested repeat loops,
or number of steps in the ladder CFG.

6. Related Works
Ferrante et al.’s notion of dependence graph [16], has been im-
proved along different directions. These improvements speedup
the construction of the graph, or make it more space-efficient. To
save construction time, Johnson and Pingali [23] have introduced
the Program Structure Tree (PST), which represents hammock re-
gions in programs, and, consequently, gives us a cheap way to
determine control dependences between instructions. In terms of
space, Cytron and Ferrante [12] have introduced the Control De-
pendence Graph, which tracks control dependences more com-
pactly. In a similar direction, Pingali and Bilardi [35] have designed
the Augmented Post-Dominator Tree, a structure that allows the ef-
ficient spatial representation of implicit dependences. Nevertheless,
in spite of all these advances, Ferrante et al.’s notion of control de-
pendences still can produce a quadratic number of edges denoting
implicit flows of information. Thus, if necessary to list all of them,
as in the construction of dependence graphs, it is possible to build
worst-cases where the quadratic behavior surfaces.

None of these approaches rely on SSA properties to achieve
more simplicity or efficiency. That is one of the greatest contri-
butions of this paper. Although simplicity is a subjective concept,
we claim that we have a simpler approach than previous work based
on two observations. First, our executable prototype of Figure 6 fits
into 27 lines of SML code. Even though its LLVM counterpart is
larger – about 600 lines of C++ – this extra size is mostly necessary
to handle the different kinds of instructions in the LLVM IR. Sec-
ond, much of the previous literature on dependence tracking claims
as a contribution the fact that they do not require the dominance
tree of a program. Yet, this data-structure is available for free in
mainstream compilers, such as gcc, LLVM, Jikes and icc, because
it is used in the construction of the SSA format. By avoiding them,
the previous algorithms renounce useful information.

Ottenstein et al.’s [33] GSA form is the work that is the clos-
est to ours. The GSA form links φ-functions to the predicates that
control them. We do not link predicates and φ-functions; however,
we might link predicates with the parameters of φ-functions when-
ever these parameters are defined in the influence region of said
predicates. Nevertheless, we are solving a different problem with
a very different algorithm. Ottenstein et al. want to build an “in-
terpretable” flavour of SSA form. We want to track control depen-
dences. GSA is not the format that we use, because it has not been
conceived as a way to implement a system of security types.
Techniques to detect and prevent timing leaks. We have used
the techniques discussed in this paper to uncover time-based side

channels. Related methodologies and guidelines to prevent such
vulnerabilities abound. John Agat has proposed a type-system to
transform a vulnerable program into a secure one. He performs this
transformation by inserting dummy instructions in branch blocks,
to mitigate the runtime difference between the two paths that can be
taken out of a conditional test. Molnar et al. [29] have designed and
implemented a source-to-source C translator that detects and fixes
control-flow based leakages. Lux et al. [28] have implemented a
tool that detects timing attack vulnerabilities in Java programs. A
key difference between our work and all this previous literature is
the fact that they operate on a high-level programming language,
using a set of inference idioms similar to the rules that Hunt and
Sands [21] have proposed for the While language. We claim that
our approach has a few advantages, because it works directly on
the compiler’s intermediate representation. Namely, we can deal
with different programming languages and do not need to rely
on the assumption that the compiler is not introducing time-based
leaks into the executable code. There exist information flow frame-
works that have been used in low-level languages, mostly Java byte-
codes [5, 9, 17, 27]. These tools have not been customized to de-
tect time-based side channels. Thus, to the best of our knowledge,
Section 5.1 contains the first report concerning the search of time-
related information leaks at the compiler level. Nevertheless, we
believe that those tools previously cited could be adapted to serve
such purpose without any fundamental change in their core algo-
rithms. Unfortunately, the descriptions of these algorithms do not
state in details which technique they use to track implicit flows.

7. Conclusion
This paper has presented a novel way to track the propagation of
information on low-level, potentially non-structured, codes. The
key idea behind the efficiency of our algorithm is the use of Static
Single Assignment form. Contrary to previous works that rely on
Ferrante et al.’s notion of control dependence, we are interested
in knowing which values can be affected by the flow of infor-
mation, not which instructions may or may not execute depend-
ing on how information propagates on the program. This notion
of influence is conceptually closer to previous work on informa-
tion flow, such as Hunt and Sands’ [21] or Agat’s [2]. Our idea of
implicit dependences comes with a number of benefits. First, the
SSA-based approach leads naturally to sparse – instead of dense –
implementations of information flow analyses. For instance, we re-
duce the space and time complexity taken from Hunt and Sands’
type-system from quadratic to linear on the number of program
variables. Second, our algorithm avoids some quadratic worst-case
scenarios that are possible in the method introduced by Ferrante et
al. to discover control dependences. To demonstrate the effective-
ness of our algorithm, we have used it to implement FlowTracker, a
tool that discovers time-based side-channels in cryptographic code.
FlowTracker has been used successfully to analyze several publicly
available libraries of cryptography, such as OpenSSL and NaCl.

Software FlowTracker has an on-line interface: http://cuda.
dcc.ufmg.br/flowtracker/. The interested reader can visu-
alize the dependence graphs produced by our algorithm and Fer-
rante’s at http://cuda.dcc.ufmg.br/flowtrackervsferrante

Acknowledgment
This project is supported by the Brazilian Ministry of Science and
Technology through CNPq, by FAPEMIG, by FAPESP and by the
Intel Corporation through the Intel University Research Office. We
thank David Ott and his colleagues from Intel for reading an early
draft of this paper. We are indebted to the CC referees for sending
us useful comments and suggestions to improve this work.

References
[1] O. Aciiçmez, c. K. Koç, and J.-P. Seifert. On the power of simple

branch prediction analysis. In ASIACCS, pages 312–320. ACM, 2007.
[2] J. Agat. Transforming out timing leaks. In POPL, pages 40–53. ACM,

2000.
[3] J. B. Almeida, M. Barbosa, J. S. Pinto, and B. Vieira. Formal verifica-

tion of side-channel countermeasures using self-composition. Science
of Computer Programming, 78(7):796–812, 2013.

[4] A. W. Appel and J. Palsberg. Modern Compiler Implementation in
Java. Cambridge University Press, 2nd edition, 2002.

[5] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-
interference java bytecode verifier. Mathematical Structures in Com-
puter Science, 23(5):1032–1081, 2013.

[6] D. J. Bernstein. Cache-timing attacks on AES, 2004. URL:
http://cr.yp.to/papers.html#cachetiming.

[7] D. J. Bernstein. Curve25519: new diffie-hellman speed records. In
PKC, pages 207–228. Springer, 2006.

[8] D. J. Bernstein, T. Lange, and P. Schwabe. The security impact of a
new cryptographic library. In Progress in Cryptology – LATINCRYPT,
pages 159–176. Springer, 2012.

[9] G. Bian, K. Nakayama, Y. Kobayashi, and M. Maekawa. Java byte-
code dependence analysis for secure information flow. I. J. Network
Security, 4(1):59–68, 2007.

[10] B. Boissinot, S. Hack, D. Grund, B. D. de Dinechin, and F. Rastello.
Fast liveness checking for SSA-form programs. In CGO, pages 35–44.
IEEE, 2008.

[11] J.-D. Choi, R. Cytron, and J. Ferrante. Automatic construction of
sparse data flow evaluation graphs. In POPL, pages 55–66. ACM,
1991.

[12] R. Cytron, J. Ferrante, and V. Sarkar. Compact representations for
control dependence. In PLDI, pages 337–351. ACM, 1990.

[13] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and F. Zadeck. Effi-
ciently computing static single assignment form and the control de-
pendence graph. TOPLAS, 13(4):451–490, 1991.

[14] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20:504–513, 1977.

[15] H. Eldib, C. Wang, M. Taha, and P. Schaumont. QMS: Evaluating the
side-channel resistance of masked software from source code. In DAC,
pages 209:1–209:6. ACM, 2014.

[16] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program de-
pendence graph and its use in optimization. TOPLAS, 9(3):319–349,
1987.

[17] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program depen-
dence graphs. Int. J. Inf. Secur., 8(6):399–422, 2009.

[18] C. Hammer, J. Krinke, and F. Nodes. Intransitive noninterference in
dependence graphs. In ISOLA, pages 119–128. IEEE, 2006.

[19] S. Horwitz, J. Prins, and T. Reps. On the adequacy of program
dependence graphs for representing programs. In POPL, pages 146–
157. ACM, 1988.

[20] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and S.-Y. Kuo. Se-
curing web application code by static analysis and runtime protection.
In WWW, pages 40–51, 2004.

[21] S. Hunt and D. Sands. On flow-sensitive security types. In POPL,
pages 79–90. ACM, 2006.

[22] R. Johnson and K. Pingali. Dependence-based program analysis. In
PLDI, pages 78–89. ACM, 1993.

[23] R. Johnson, D. Pearson, and K. Pingali. The program tree structure.
In PLDI, pages 171–185. ACM, 1994.

[24] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In CRYPTO, pages 104–113. Springer,
1996.

[25] C. Lattner and V. S. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO, pages 75–88.
IEEE, 2004.

[26] J. López and R. Dahab. Fast Multiplication on Elliptic Curves over
GF(2m) without Precomputation. In CHES, volume 1717 of LNCS,
pages 316–327. Springer, 1999.

[27] S. Lortz, H. Mantel, A. Starostin, T. Bähr, D. Schneider, and A. Weber.
Cassandra: Towards a certifying app store for android. In SPSM, pages
93–104. ACM, 2014.

[28] A. Lux and A. Starostin. A tool for static detection of timing channels
in java. Journal of Cryptographic Engineering, 1(4):303–313, 2011.

[29] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. The program
counter security model: Automatic detection and removal of control-
flow side channel attacks. In ICISC, pages 156–168. Springer, 2006.

[30] H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and implementation
of sparse global analyses for c-like languages. In PLDI, pages 1–11.
ACM, 2012.

[31] T. Oliveira, J. López, D. F. Aranha, and F. Rodrı́guez-Henrı́quez. Two
is the fastest prime: lambda coordinates for binary elliptic curves. J.
Cryptographic Engineering, 4(1):3–17, 2014.

[32] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and counter-
measures: the case of AES. In Topics in Cryptology–CT-RSA, pages
1–20. Springer, 2006.

[33] K. J. Ottenstein, R. A. Ballance, and A. B. MacCabe. The pro-
gram dependence web: a representation supporting control-, data-, and
demand-driven interpretation of imperative languages. In PLDI, pages
257–271. ACM, 1990.

[34] F. M. Q. Pereira and J. Palsberg. SSA elimination after register
allocation. In CC, pages 158 – 173, 2009.

[35] K. Pingali and G. Bilardi. Optimal control dependence computation
and the roman chariots problem. In TOPLAS, pages 462–491. ACM,
1997.

[36] V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, and M. B. Dwyer.
A new foundation for control dependence and slicing for modern
program structures. TOPLAS, 29(5), 2007.

[37] F. Rastello. SSA-based Compiler Design. Springer, 1st edition, 2015.
[38] T. Reps and W. Yang. The semantics of program slicing. Technical

report, University of Wisconsin – Madison, 1988.
[39] A. Rimsa, M. d’Amorim, F. M. Q. Pereira, and R. da Silva Bigonha.

Efficient static checker for tainted variable attacks. Sci. Comput.
Program., 80:91–105, 2014.

[40] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security
analysis. In CSF, pages 186–199. IEEE Computer Society, 2010.

[41] G. Snelting. Combining slicing and constraint solving for validation
of measurement software. In SAS, pages 332–348. Springer, 1996.

[42] V. C. Sreedhar and G. R. Gao. A linear time algorithm for placing
φ-nodes. In POPL, pages 62–73. ACM, 1995.

[43] V. C. Sreedhar, R. D. ching Ju, D. M. Gillies, and V. Santhanam.
Translating out of static single assignment form. In SAS, pages 194–
210. Springer, 1999.

[44] M. Taghdiri, G. Snelting, and C. Sinz. Information flow analysis via
path condition refinement. In FAST, pages 65–79. Springer, 2011.

[45] A. Tavares, B. Boissinot, F. Pereira, and F. Rastello. Parameterized
construction of program representations for sparse dataflow analyses.
In CC, pages 2–21. Springer, 2014.

[46] D. Wasserrab, D. Lohner, and G. Snelting. On pdg-based noninterfer-
ence and its modular proof. In PLAS, pages 31–44. ACM, 2009.

[47] Y. Yarom and N. Benger. Recovering openssl ECDSA nonces using
the FLUSH+RELOAD cache side-channel attack. Cryptology ePrint
Archive, Report 2014/140, 2014. http://eprint.iacr.org/.

[48] R. Zhang, S. Huang, Z. Qi, and H. Guan. Combining static and
dynamic analysis to discover software vulnerabilities. In IMIS, pages
175–181. IEEE Computer Society, 2011.

[49] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formal
verification of ssa-based optimizations for llvm. In PLDI, pages 175–
186. ACM, 2013.

