
Side-Channel Elimination via Partial Control-Flow
Linearization

LUIGI SOARES, UFMG, Brazil

MICHAEL CANESCHE, UFMG, Brazil

FERNANDO MAGNO QUINTÃO PEREIRA, UFMG, Brazil

Partial control-flow linearization is a code transformation conceived to maximize work performed in vectorized

programs. In this paper, we find a new service for it. We show that partial control-flow linearization protects

programs against timing attacks. This transformation is sound: given an instance of its public inputs, the

partially linearized program always runs the same sequence of instructions, regardless of secret inputs.

Incidentally, if the original program is publicly safe, then accesses to the data cache will be data oblivious

in the transformed code. The transformation is optimal: every branch that depends on some secret data is

linearized; no branch that depends on only public data is linearized. Therefore, the transformation preserves

loops that depend exclusively on public information. If every branch that leaves a loop depends on secret data,

then the transformed program will not terminate. Our transformation extends previous work in non-trivial

ways. It handles C constructs such as “goto”, “break”, “switch” and “continue”, which are absent in the FaCT

domain-specific language (2018). Like Constantine (2021), our transformation ensures operation invariance,

but without requiring profiling information. Additionally, in contrast to SC-Eliminator (2018) and Lif (2021), it

handles programs containing loops whose trip count is not known at compilation time.

CCS Concepts: • Software and its engineering→ Compilers; • Security and privacy→ Cryptography.

Additional Key Words and Phrases: Side channel, cryptography, compiler

ACM Reference Format:
Luigi Soares, Michael Canesche, and Fernando Magno Quintão Pereira. 2023. Side-Channel Elimination via

Partial Control-Flow Linearization. 1, 1 (March 2023), 44 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A program is said to be isochronous if it always executes the same instructions and accesses the

same sequence of memory addresses, independent of its secret inputs. Isochronous programs do

not leak time-related information [Kocher 1996]; therefore, isochronicity is an essential property in

implementations of cryptographic routines [Almeida et al. 2016; Almeida et al. 2020; Barthe et al.

2019]. In view of this importance, much work has been done to detect time-variant code [Almeida

et al. 2016; Barthe et al. 2019; Guarnieri et al. 2021; Ngo et al. 2017; Reparaz et al. 2017] or to remove

sources of time variance [Agat 2000; Almeida et al. 2020; Borrello et al. 2021; Chattopadhyay and

Roychoudhury 2018; Cleemput et al. 2012; Fell et al. 2019; Gruss et al. 2017; Tizpaz-Niari et al.

2019; Van Cleemput et al. 2020; Wu et al. 2018a]. And yet, the implementation of a static code

Authors’ addresses: Luigi Soares, Computer Science, UFMG, Belo Horizonte, Minas Gerais, Brazil, luigi.domenico@dcc.

ufmg.br; Michael Canesche, Computer Science, UFMG, Belo Horizonte, Minas Gerais, Brazil, michaelcanesche@dcc.ufmg.br;

Fernando Magno Quintão Pereira, Computer Science, UFMG, Belo Horizonte, Minas Gerais, Brazil, pronesto@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

XXXX-XXXX/2023/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: March 2023.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

transformation technique able to make programs operation invariant with respect to secret inputs

remains an elusive endeavor for programs containing loops.

The Breakthroughs of 2021. Current methodologies to achieve operation invariance with regards

to secret inputs consist in linearizing the program’s control-flow graph. Linearization removes

branches from a program. Until recently, the state-of-the-art approach to perform linearization was

due to Wu et al. [2018a]. In 2021, Soares and Pereira [2021] proposed Lif as an improvement of

Wu et al.’s transformation, to prevent it from introducing out-of-bounds accesses into the program.

The techniques of Wu et al. and Soares and Pereira are fully static: they do not require executing a

program to change it. However, they cannot deal with programs containing loops, unless these

loops have bounds known at compilation time, i.e. are fully unrollable. This limitation exists even

if the loops only branch on public information.

Still in 2021, Borrello et al. [2021] introduced Constantine, a dynamic alternative to Soares and

Pereira’s static technique. Borrello et al. execute the program and use runtime information like

memory addresses and the outcome of branches to linearize the part of the code that could be

covered during the execution. Borrello et al.’s strategy handles programs with general loops. To

the best of our knowledge, it does not insert invalid memory accesses into programs. However,

it also has limitations. Our personal experience with Constantine is that it is hard to find inputs

that reach particular branches that should be linearized. In this paper, we show that it is possible to

handle programs with general loops with a static analysis, hence bringing the results of Soares and

Pereira closer to Borrello et al.’s.

Enter Partial Control-Flow Linearization. In 2018, Moll and Hack [2018] introduced partial control-

flow linearization (PCFL): a code-optimization technique to speed up programs in the Single-
Instruction, Multiple-Data (SIMD) model [Flynn 1972]. An SIMD program is processed by multiple

threads running in lockstep. The hardware fetches one instruction at a time, which is forwarded to

all the threads. Thus, these threads process the same instruction simultaneously, albeit on different

data. In an SIMD program, some branches can be proven to be uniform, meaning that they always

yield the same outcome for the threads that execute them together. The other branches are called

divergent. Moll and Hack’s PCFL removes the divergent branches from the program, linearizing

the blocks controlled by them. This transformation keeps the uniform branches unchanged. In

principle, PCFL seems unrelated to side-channel resistance. However, replace “uniform” with public
and “divergent” with secret, and we obtain a beautiful algorithm to make programs isochronous!

The Contributions of this Paper. This paper shows how to adapt Moll and Hack’s partial control-

flow linearization to make the sequence of instructions executed by a program invariant with

regard to secret inputs that said program might receive. As we shall see in §4.7, PCFL suffices

to ensure Cryptopgrahic Constant-Time (CCT) behavior [Barthe et al. 2021, §2.3] — or, as we call

it, isochronicity — for publicly-safe programs
1
. To employ our code transformation, users must

indicate which program inputs are secret. No more interventions are necessary. The generated

code achieves the following properties, which guarantee standard notions [Rafnsson et al. 2017,

§4] of confidentiality and non-interference [Zdancewic and Myers 2001]:

Operation Invariance: given an arbitrary instance of the public inputs, every execution of

the transformed program processes the same sequence of addresses in the instruction cache.

Data Invariance: given an arbitrary instance of the public inputs, every execution of the

transformed program processes the same sequence of reads and writes in the data cache

1
Definition 2.11 (Page 8) explains the notion of public safety, which was originally formalized by Cauligi et al. [2019]. For

now, it suffices to know that memory accesses in a publicly-safe program are either independent from secret inputs or

happen within buffers whose bounds are known to the code linearizer.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

— this property is guaranteed whenever the original program is publicly safe [Cauligi et al.
2019, §3.2.3].

Memory Safety: the transformed program only contains out-of-bounds memory accesses that

already exist in the original program, given any input feed to it.

Termination: a loop in the transformed program only terminates due to public information.

A loop controlled only by secret data will not terminate.

The last property — termination — implies that the transformation proposed in this paper might

turn a terminating program into an infinite loop. Non-termination emerges when a loop can only

terminate due to conditions that depend on secret information. In other words, a partially linearized

loop whose function is called with public inputs that do not trigger any of the loop exits will run

forever. The most trivial case is when every exit condition of the original loop depends on secret

information, a scenario that can be statically determined after partial control-flow linearization.

Section 4.5.3 will provide further discussion on this subject, analyzing the merits and shortcomings

of partial control-flow linearization in regard to termination. Although some of the properties that

we meet are the same as those delivered by Soares and Pereira, the algorithm proposed in this

paper is very different, and the code that it produces is equally unrelated. Programs produced by

our transformation still might have branches, as long as these branches are not influenced by secret

data. Hence, we expand previous work in many ways:

(1) Static Generality: in contrast to previous work [Soares and Pereira 2021; Wu et al. 2018a], our

transformation handles programs with loops, even if these loops cannot be fully unrolled.

(2) Static Efficiency: in contrast to previous static transformations [Soares and Pereira 2021; Wu

et al. 2018a], we preserve branches controlled by public information, avoiding the unnecessary

execution of unreachable code.

(3) Decidability: our transformation is fully static. Thus, in contrast to a dynamic tool like

Constantine [Borrello et al. 2021], it does not require test cases that exercise all the program
branches.

(4) Convenience: in contrast to a domain-specific language such as FaCT [Cauligi et al. 2019],

programmers can write publicly-safe code directly in C and still obtain isochronicity.

Summary of Results. We have implemented our ideas in LLVM 13.0 [Lattner and Adve 2004].

Section 5 compares this implementation with Lif, Constantine, SC-Eliminator and FaCT in

regard to 13 programs whose inputs can be split into public and secret data. Section 5.4 certifies that

the transformed programs meet the guarantees previously enumerated, i.e. operation invariance

in general, data invariance for publicly-safe programs, memory safety and termination. Figure 1

summarizes results reported in §5 for the nine benchmarks that all the tools can handle. Lif and
SC-Eliminator cannot handle three benchmarks due to unbounded loops. These two tools and

Constantine failed to produce correct output for another one. Notice that the size of the code

produced by Lif and SC-Eliminator is much bigger because these tools require that loops are

fully unrolled. Our prototype is available at https://github.com/lac-dcc/lif as an improvement of

Lif, the artifact produced by Soares and Pereira [2021].

2 THREAT MODEL AND GUARANTEES
We adopt a string-of-addresses threat model used by previous work [Cauligi et al. 2019; Soares

and Pereira 2021]. We assume an attacker who can observe the sequence of addresses accessed

by a program in the instruction and data caches. In other words, the attacker has access to the

trace formed by the memory addresses read or written by a program, including the address of the

, Vol. 1, No. 1, Article . Publication date: March 2023.

https://github.com/lac-dcc/lif

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

33.49 271.61 2,045.22 65.19 2,697.06 2,149.28

14.94 4.605.21 12.09 6.27 5.193.23

10,863.56330.78 464.67 365.89 8,444.89377.00 15,342.11

SC-CFLSC-OrigCTT-CFLCTT-OrigLifPCFL (this)Original

Size (LLVM insts)

Running time (us)

Lineariz. time (ms)

Tool

Fig. 1. Summary of results from Section 5 with regard to the nine benchmarks that all the tools can handle.
Numbers are arithmetic means. Measurements happen after programs are transformed and then optimized
with LLVM opt -O3. “LLVM instrs.” refer to the number of LLVM instructions in the intermediate representation
of the benchmark. “Lineariz. time" is the time taken to linearize the control flow of the programs. Original
refers to the benchmark without any transformation. PCFL is our technique. CTT refers to Constantine; SC
refers to SC-Eliminator. These two tools can do control- and data-flow linearization. Hence, -Orig refers to
their original implementations, and -CFL refers to the implementation with only control-flow linearization.
Our approach only does control-flow linearization, but achieves data invariance for publicly-safe programs.

instructions fetched during execution
2
. This model delivers stronger guarantees than the hit-miss

model typically adopted in cache-based timing attacks. The hit-miss model considers an attacker

who has access to the sequence of cache hits and misses [Borrello et al. 2021; Wu et al. 2018a;

Zhang et al. 2022], assuming a deterministic timing model [Balliu et al. 2014, §3]. Both models,

string-of-addresses and hit-miss, follow the general execution-trace model discussed by Zdancewic

and Myers [2001, §2]; however, the string-of-addresses model includes fewer programs. Example 2.1

further explains these differences.

Example 2.1. Any program that contains a memory access indexed by secret information, e.g.

t[pw[i]] in function oTdF (Figure 2 (c)), will yield a different string of addresses accessed in the

data cache, thus leaking information. Leaks happen even if only cache hits occur in practice. In the

words of Cauligi et al. [2019], these programs are not considered publicly safe. In fact, an indirect

comparison between these two models — string-of-addresses and hit-miss — is available in the work

of Zhang et al. [2022]. Zhang et al. compare two tools, CAPE and Lif. The former uses the hit-miss

model; the latter, the string-of-addresses model. Out of five benchmarks transformed by CAPE, Lif
could secure only one, albeit with stronger guarantees. Thus, whereas CAPE tries to guarantee that

the string of cache lines accessed during program execution is invariant, Lif tries to guarantee

that the string of addresses (within those lines) is invariant.

The string of addresses might contain addresses from the data cache and addresses from the

instruction cache. If the addresses from the instruction cache are invariant with respect to secret

inputs, then the program is said to be operation invariant, according to Definition 2.2:

Definition 2.2 (Operation Invariance). Let I = (S,P) be the inputs taken by a program 𝑃 , where

S is the set of secret and P is the set of public inputs. Let 𝜏1 and 𝜏2 be traces of operations that

correspond to the execution of 𝑃 when given instances I1 = (S1,P) and I2 = (S2,P). Program 𝑃

is said to be operation invariant if 𝜏1 = 𝜏2 always holds for any S1 and S2, S1 ≠ S2.

Example 2.3. Functions oFdF and oFdT depicted in Figures 2 (a) and (b) are not operation invariant,
whereas oTdF and oTdT from Figures 2 (c) and (d) are. To illustrate the concept of operation

invariance, consider Figures 2 (a) and (d), with public inputs g = {0} and n = 2. The traces of
operations that correspond to function oFdF called with the secret inputs pw = {0} and pw = {1}

2
Microarchitectural behavior, such as speculative execution, store-to-load forwarding, and prefetching influence which

addresses flow to the cache. Thus, the string-of-addresses threat model is still an approximation of what an actual attacker

can learn with regard to program execution.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

are, respectively,

𝜏
(𝑎)
1

= (i = 0, i < n, g[i] != pw[i], i++, i < n, ret 1) and

𝜏
(𝑎)
2

= (i = 0, i < n, g[i] != pw[i], ret 0).
Notice that the string-of-addresses threat model refers to traces of instruction addresses. However,
for clarity, we use the instructions themselves, instead of their addresses, when presenting execution

traces. This style of presentation is not ambiguous, because our examples do not contain repeated

instructions. Continuing with the example, if the function oTdT is called with the same secret inputs

as above — namely, pw = {0} and pw = {1} — then the corresponding traces are

𝜏
(𝑑)
1

= (r = 1, i = 0, i < n, r &= g[i] != pw[i], i++, i < n, ret r) and

𝜏
(𝑑)
2

= (r = 1, i = 0, i < n, r &= g[i] != pw[i], i++, i < n, ret r).

Notice that 𝜏
(𝑎)
1

≠ 𝜏
(𝑎)
2

, while 𝜏
(𝑑)
1

= 𝜏
(𝑑)
2

. That is, the instructions executed in oFdF vary depending

on the secret pw, but are always the same in function oTdT regardless of the value of the secret.

1 / / g (g u e s s) i s p u b l i c .
2 / / pw (pas sword) i s s e c r e t .
3 / / n i s p u b l i c .
4 in t oFdF (in t ∗ g , in t ∗pw , in t n) {
5 for (in t i = 0 ; i < n ; i ++)
6 i f (g [i] ! = pw[i]) return 0 ;
7 return 1 ;
8 }
9

10

1 / / g (g u e s s) i s p u b l i c .
2 / / pw (pas sword) i s s e c r e t .
3 / / n i s p u b l i c .
4 in t oFdT (in t ∗ g , in t ∗pw , in t n) {
5 in t r = 1 ;
6 for (in t i = 0 ; i < n ; i ++)
7 i f (g [i] ! = pw[i]) r = 0 ;
8 return r ;
9 }
10

1 / / g (g u e s s) and t (t a b l e) a r e p u b l i c .
2 / / pw (pas sword) i s s e c r e t .
3 / / n i s p u b l i c .
4 in t oTdF (in t ∗ g , in t ∗pw , in t ∗ t , in t n) {
5 in t r = 0 ;
6 for (in t i = 0 ; i < n ; i ++) {
7 / / s e c r e t − dependen t i n d e x : pw[i]
8 r | = t [g [i]] ! = t [pw[i]] ;
9 }
10 return r ? 0 : 1 ;
11 }

1 / / g (g u e s s) i s p u b l i c .
2 / / pw (pas sword) i s s e c r e t .
3 / / n i s p u b l i c .
4 in t oTdT (in t ∗ g , in t ∗pw , in t n) {
5 in t r = 1 ;
6 for (in t i = 0 ; i < n ; i ++)
7 r &= g [i] ! = pw[i] ;
8 return r ;
9 }
10

11

O ∧ D

a

O ∧ D

b

O ∧ D

c

O ∧ D

d

Fig. 2. Operation and data invariance are program properties that can occur independently from each other
in code. A program can be both, operation and data invariant, or present only one of these properties, or
none of them. Functions oFdF, oFdT, oTdF and oTdT compare the user’s guess g with a secret password pw.
(a) oFdF returns immediately whenever two elements are different; as such, it is neither operation nor data
invariant. (b) oFdT always reads the same array cells; hence, it is data invariant, but not operation invariant.
(c) oTdF is operation invariant; however, it has indirect accesses through a table t, using secret-dependent
indices (pw[i]), and thus it is not data invariant. (d) oTdT always performs the same sequence of instructions
and memory accesses; thus, it is both operation and data invariant.

If the addresses from the data cache are invariant with respect to secret inputs, then the program

is said to be data invariant. Definition 2.4 states this concept.

Definition 2.4 (Data Invariance). Let I = (S,P) be the inputs taken by a program 𝑃 , where S
is the set of secret and P is the set of public inputs. Let 𝜏1 and 𝜏2 be traces of memory addresses

in the data cache that correspond to the execution of 𝑃 when given instances I1 = (S1,P) and
I2 = (S2,P), S1 ≠ S2. Program 𝑃 is said to be data invariant if 𝜏1 = 𝜏2 always holds.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

Example 2.5 (Data Invariance). Consider, again, the procedures from Figure 2. Functions oFdF and
oTdF are not data invariant, whereas oFdT and oTdT are. To illustrate the notion of data invariance,

let us observe the execution of functions oFdF (Figure 2 (a)) and oTdT (Figure 2 (d)) when called with

public inputs g = {0,0} and n = 2. When called with secret inputs pw = {0,0} and pw = {1,0},
the traces of memory addresses that correspond to function oFdF are, respectively,

𝜏
(𝑎)
1

= (g[0], pw[0], g[1], pw[1]) and

𝜏
(𝑎)
2

= (g[0], pw[0]).

Notice that, similarly to Example 2.3, we use the syntax of an array access, e.g. g[0], instead of

the address of that memory position, to represent traces in the data cache. Continuing with the

example, if the function oTdT is called with the same secret inputs as above — namely, pw = {0,0}
and pw = {1,0} — then the corresponding traces are, respectively,

𝜏
(𝑑)
1

= (g[0], pw[0], g[1], pw[1]) and

𝜏
(𝑑)
2

= (g[0], pw[0], g[1], pw[1]).

Notice that 𝜏
(𝑎)
1

≠ 𝜏
(𝑎)
2

, while 𝜏
(𝑑)
1

= 𝜏
(𝑑)
2

. That is, the data addresses accessed in oFdF vary

depending on the secret pw, but are always the same in oTdT regardless of the value of the secret.

Function oTdT is a typical constant-time transformation of function oFdF, e.g. it is close to the

code produced by SC-Eliminator [Wu et al. 2018a]. However, as pointed out by Soares and Pereira

[2021], the transformed version might incur into out-of-bounds memory accesses that were absent

in the original program
3
. Example 2.6 illustrates the problem of memory safety.

Example 2.6 (Memory Safety). Suppose that functions oFdF and oTdT are called with arguments

g = {0}, pw = {1} and n = 2. The former, oFdF, will immediately return after comparing g and
pw, whereas the latter will move on to the second iteration of the loop, thus accessing arrays g and

pw at index 1, which is out of bounds. These invalid accesses do not occur in the original code oFdF.

In general, it is impossible to ensure data invariance in a memory-safe way. Soares and Pereira

[2021] have shown that there are programs that cannot be transformed to be data invariant

and memory safe while preserving their semantics. Thus, usually code linearizers settle for a

compromise: they replace potentially unsafe memory accesses with accesses to a dummy memory

position — the shadow memory. Nevertheless, the use of a shadow memory as a surrogate address

might cause the transformed code to be data variant. Example 2.7 illustrates this issue.

Example 2.7. As seen in Example 2.6, function oTdTwould be a memory-unsafe linearized version

of function oFdF, both seen in Figure 2. Figure 3, in turn, shows a transformation of the function

oFdF that preserves memory safety. This linearization assumes that the sizes of arrays g and pw can
be inferred symbolically by a static-analysis tool. These sizes are represented by integers g->size
and pw->size. In-bounds memory accesses happen as is; however, out-of-bounds addresses are

replaced with the dummy variable shadow. Consider that memsafe_oTdT is called with public inputs
g->data = {0, 0} and n = 2. Furthermore, assume that it was not possible to infer the size of

the arrays and thus g->size = pw->size = 0. Let 𝜏1 be the trace produced for the secret input

pw->data = {0, 0} and let 𝜏2 be the trace produced for the secret input pw->data = {1, 0}.

3
The implementations used by Soares and Pereira [2021] as examples can be seen as loop-free versions of the codes from

Figure 2. Recall that neither Lif [Soares and Pereira 2021] nor SC-Eliminator [Wu et al. 2018a] can deal with general

loops.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

Then, we have

𝜏1 = (g->data[0], pw->data[0], g->data[1], pw->data[1]) and
𝜏2 = (g->data[0], pw->data[0], shadow, shadow).

As a second example, consider that function memsafe_oTdT is calledwith arguments g->data = {0},
g->size = pw->size = 1 and n = 2. Let 𝜏3 be the trace produced for the secret pw->data = {1}
(similar to Example 2.6) and let 𝜏4 be the trace produced for the secret pw->data = {0}. Then,

𝜏3 = (g->data[0], pw->data[0], shadow, shadow) and
𝜏4 = (g->data[0], pw->data[0], g->data[1], pw->data[1]).

Notice that, as opposed to function oTdT, when pw->data = {1} there was no out-of-bounds

accesses in the second iteration of the loop (trace 𝜏3). Notice, also, that the out-of-bounds accesses

verified in 𝜏4 would also happen in the original function oFdF, when called with arguments g = {0},
pw = {0} and n = 2. In other words, memsafe_oTdT has not introduced new out-of-bounds accesses

and thus the transformation that produced memsafe_oTdT preserves memory safety.

1 typedef s t ruc t p t r_ in t_wrapped {
2 in t ∗ data ;
3 / / t h e o b j e c t ' s i n f e r r e d s i z e
4 in t s i z e ;
5 } p t r _ in t_wrapped ;
6

7 / / g (g u e s s) i s p u b l i c .
8 / / pw (pas sword) i s s e c r e t .
9 / / n i s p u b l i c .
10 in t memsafe_oTdT (p t r _ in t_wrapped ∗ g , p t r _ in t_wrapped ∗pw , in t n) {
11 in t ∗ shadow = (in t ∗) ma l l o c (s i zeo f (in t)) ;
12 in t r = 1 ;
13 / / I f t r u e , i n d i c a t e s t h a t t h e l oop has no t e n t e r e d i n " dummy" mode . By dummy mode , we
14 / / mean t h a t t h e l oop would have a l r e a d y e x i t e d i n t h e o r i g i n a l v e r s i o n o f t h i s code .
15 in t l oop_cond = 1 ;
16 for (in t i = 0 ; i < n ; i ++) {
17 / / I f " l oop_cond " i s t r u e , a r r a y s g and pw a r e used . The o r i g i n a l a r r a y s a r e a l s o used
18 / / i f " l oop_cond " i s f a l s e (i . e . t h e l oop i s now o p e r a t i n g i n dummy mode) , bu t t h e
19 / / a c c e s s e s a r e in −bounds . O the rw i s e , t h e shadow memory i s used .
20 in t ∗ g_addr = c t s e l (loop_cond | (i < g−> s i z e) , g−>data , shadow) ;
21 in t ∗ pw_addr = c t s e l (loop_cond | (i < pw−> s i z e) , pw−>data , shadow) ;
22 in t g_ idx = c t s e l (loop_cond | (i < g−> s i z e) , i , 0) ;
23 in t pw_idx = c t s e l (loop_cond | (i < pw−> s i z e) , i , 0) ;
24 in t g_ i = g_addr [g_ idx] ;
25 in t pw_i = pw_addr [pw_idx] ;
26 l oop_cond &= g_ i == pw_i ;
27 r &= loop_cond ;
28 }
29 return r ;
30 }

Fig. 3. This function is a partially linearized version of the function oFdF seen in Figure 2 (a). The code
transformation introduced in this paper transforms function oFdF into function memsafe_oTdT automatically.
We named the repaired function as memsafe_oTdT to indicate that the code transformation corresponds to a
memory-safe version of the transformation that led to function oTdT (Figure 2 (d)). Notice that our techniques
are implemented in LLVM, and work at the level of the LLVM intermediate representation — we show code
in C for readability. We assume the existence of a ctsel function that conditionally select between two
values and runs in constant time (see Section 4.2). Function memsafe_oTdT is operation invariant, but is data
invariant only if the array sizes, i.e. g->size and pw->size, are known to be greater than or equal to the loop
bound n. In this paper, we omit how the signature of oFdF is augmented with the sizes of the objects, because
our interventions are similar to the ones described in detail in Section III.C of Soares and Pereira’s work.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

There are alternative approaches for solving the problem of memory safety. Constantine [Bor-

rello et al. 2021], for instance, “obliviously accesses all the locations that the original program can
possibly reference for any initial input”. In practice, Constantine surrounds every memory access

m[i] with a loop that traverses every address in the buffer m. The drawback of this approach, if

applied naïvely, is that the performance overhead may be prohibitive. Furthermore, Constantine
requires the sizes of objects to be public. Example 2.8 illustrates the behavior of Constantine.

Example 2.8. Consider the function oFdF from Figure 2 (a). If we assume that the sizes of arrays g
and pw are fixed and only their contents can vary, then Constantine can safely linearize oFdF and

deliver data invariance: regardless of the contents of the secret pw, considering fixed and publicly

known array sizes, the trace of data addresses will be the same. If, however, we allow the size of

pw to vary, then any access past the size of pw must be replaced with an access to a valid address,

and thus data invariance cannot be guaranteed. Notice that, under the assumption of public sizes,

and provided that we can correctly infer the sizes of the objects, our approach delivers the same

guarantees as Constantine.

Nonetheless, there is a class of programs for which data invariance can always be delivered: the

publicly-safe programs, which Definition 2.11 shall formalize. Definition 2.11 relies on the notions

of data and control dependency. These concepts are present in Ferrante et al. [1987]’s seminal work.

Definition 2.9 revisits them, to keep this paper self consistent.

Definition 2.9 (Data & Control Dependency [Ferrante et al. 1987]). Variable 𝑦 is data dependent on
variable 𝑥 if 𝑦 is assigned in an instruction that uses 𝑥 . Variable 𝑥 is control dependent on a variable

𝑝 if the value assigned to 𝑥 depends on the outcome of a branch whose condition uses 𝑝 . Variable

𝑥 is dependent on variable 𝑦 if either 𝑥 is data or control dependent on 𝑦, or if 𝑥 is dependent on

some variable 𝑧, which is either data or control dependent on 𝑦.

Example 2.10. Variable r in Figure 2 (c) is data dependent on variables t, g, pw and i, due to the

assignment in Line 8. This variable is control dependent on the predicate i < n, which controls the

loop at Line 6 of Figure 2 (c).

To delimit the set of codes that we transform, Definition 2.11 establishes two classes of programs:

those that are shadow safe and those that are publicly safe. The latter is a proper subset of the

former. Notice that in Definition 2.11, shadow safety refers to the expression 𝑒 used to index a

memory access, e.g.,𝑚[𝑒]. Public safety, in turn, refers to the site, within the program, where the

instruction that refers to𝑚[𝑒] exists.

Definition 2.11 (Safety). A program meets shadow safety if, for every memory access𝑚[𝑖], the
index 𝑖 is not dependent on secret. If, in addition, for every access𝑚[𝑖] that is control dependent
on secret, 𝑖 < size(𝑚) holds, then this program meets public safety [Cauligi et al. 2019].

Public safety was initially proposed by Cauligi et al. [2019] to characterize programs whose

accesses to data can always be safely linearized. Definition 2.11 provides a weaker version of public

safety, which we call shadow safety. This notion is important to this paper because, as we shall

demonstrate in Section 4.7 (Theorem 4.26), programs that meet shadow safety, once transformed,

become “almost” data invariant: data addresses that can vary with secret inputs are replaced

with the shadow memory whenever these accesses should not happen and cannot be proven safe.

Example 2.12 clarifies the difference between public safety and shadow safety.

Example 2.12. Function oFdF in Figure 2 (a) is shadow safe: variable i, used to index memory

accesses at Line 6, is neither data nor control dependent on any secret. However, the accesses at

Line 6 are control dependent on the predicate g[i] != pw[i], which relies on the secret input

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

pw. Therefore, this program will be publicly safe if it can be proven that i < size(g) ∧ i < size(pw)
(the proof technique is immaterial to this discussion). If these two properties hold, then it follows

that g_i = g->data[i] and pw_i = pw->data[i], for every 0 ≤ 𝑖 < 𝑛 in the linearized code

(Figure 3, Lines 20–25), and thus every trace of accesses to the data cache produced by function

memsafe_oTdT will be the same (i.e. data invariant).

When transforming publicly-safe programs we guarantee operation and data invariance. We

also preserve memory safety. Nevertheless, we emphasize that is not our goal to provide proper

solutions for data invariance; rather, our focus is to demonstrate that Moll and Hack’s partial

control-flow linearization can be adapted to make programs operation invariant with regards to

secret inputs. Data invariance comes as a bonus for publicly-safe programs.

3 PARTIAL CONTROL-FLOW LINEARIZATION
Partial control-flow linearization is a code generation technique conceived for the single instruction,

multiple data (SIMD) execution model. SIMD machines are an economically viable alternative to

process the so-called “embarrassingly parallel” workloads. The model characterizes the stream

processors in graphics processing units (GPUs) [Garland and Kirk 2010] or the vector units found

in modern CPUs [Chen et al. 2021], like Intel x86’s SSE and AVX, AMD’s 3DNow!, ARM’s NEON,

Sparc’s VIS, PowerPC’s AltiVec and MIPS’ MSA. In this environment, multiple processing elements,
or threads, simultaneously execute the same operation on different data. Example 3.1 will make

this modus operandi more concrete.

Example 3.1. Figure 4 (a) shows a simplified CUDA kernel — a program meant to run on a

graphics processing unit. This program counts how many occurrences of keys stored in the array q
are present in the matrix d. Results are stored in the array r. Syntactically, function search looks

like standard C code. Semantically, it is very different: the program will be executed by multiple

threads in lockstep. Although threads see the same arguments q, d and r, they differ with respect to

the special register tid. This identifier is unique per thread. A common pattern in this environment

is to use this register to set up the work that each processing element will carry out. In this example,

each thread uses its own tid as the index of the value in q that must be searched in the matrix d.
The thread identifier also indicates the position in r where each thread will store its answer.

The SIMD model suits very well straight-line code, that is, code without branches, because

the execution flow of the different processing elements never diverges in this setting. However,

programs do have branches over which threads might disagree. In face of divergences, threads still

move in lockstep at the hardware level; however, some processing elements stop doing useful work.

Typically, predicated instructions are used to ensure that processing elements only write back their

results when they run along paths actually taken within the program. Example 3.2 illustrates this

trend.

Example 3.2. Figure 4 (b) shows the control-flow graph (CFG) of the kernel seen in Figure 4

(a). This CFG contains two conditional branches at the end of blocks 1 and 2. The former can be

determined to be uniform, meaning that threads always take the same decision when executing it;

the latter is divergent. There exist standard compiler analyses to separate uniform and divergent

branches [Coutinho et al. 2011; Sampaio et al. 2014]. Figure 4 (c) shows a linearization of the CFG

in Figure 4 (b) that removes the divergent branch while preserving the uniform one. The store in

block 4 still happens, but is silent, unless the predicate p1, which controls the divergent branch

in Figure 4 (b), is true. A silent store writes to memory the same value that was already there. A

conditional selector (ctsel), guarded by p1, determines if the store is silent or not.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

1 __g l o ba l _ _ void s ea r ch (in t ∗ q , in t d [T] [N] , in t ∗ r) {
2 for (in t i = 0 ; i < N ; i ++) {
3 i f (q [t i d] == d [t i d] [i])
4 r [t i d] += 1
5 }
6 }

0: br 1

1: i1 = phi [i0, 0], [i2, 5]
p0 = i < N
br p0, 2, 3

2: t0 = q[tid]
t1 = tid * N
t2 = t1 + i
t3 = d[t2]
p1 = t0 == t3
br p1, 4, 5

3: halt

4: t4 = r[tid]
t5 = t4 + 1
r[tid]← t5
br 5

5: i2 = i1 + 1
br 1

0: br 1

1: i1 = phi [i0, 0], [i2, 5]
p0 = i < N
br p0, 2, 3

2: t0 = q[tid]
t1 = tid * N
t2 = t1 + i
t3 = d[t2]
p1 = t0 == t3
t4 = r[tid]
t5 = t4 + 1
t6 = ctsel p1, t5, t4
r[tid]← t6
i2 = i1 + 1
br 1

3: halt

b c

a

uniform

divergent

Fig. 4. (a) CUDA kernel that counts occurrences of keys in a matrix. (b) Control-flow graph of the kernel. (c)
Partially linearized control-flow graph.

Because only some, but not all, branches in Example 3.2 are removed, the linearization is said to

be partial. The current state-of-the-art algorithm for partial control-flow linearization is due to

Moll and Hack [2018]. Figure 5 shows a version of that algorithm in Python syntax. We present the

algorithm for the sake of completeness, for it is extensively described in its original exposition [Moll

and Hack 2018]. The algorithm visits the basic blocks in the target graph in a special order: the

compact topological ordering, which is formalized in Definition 3.3.

Definition 3.3 (Compact Topological Ordering). Given a directed graph 𝐺 with a unique root

vertex 𝑠 , we say that vertex 𝑢 dominates vertex 𝑣 if every path from 𝑠 to 𝑣 must go through 𝑢.

An n-sequence of vertices 𝑣1, . . . , 𝑣𝑛 is dominance compact if whenever 𝑣1 dominates 𝑣𝑛 then 𝑣1
dominates every 𝑣𝑖 , 1 < 𝑖 < 𝑛. Similarly, an n-sequence of vertices 𝑣1, . . . , 𝑣𝑛 is loop compact if
whenever 𝑣1 and 𝑣𝑛 belong to a loop 𝐿 then every 𝑣𝑖 , 1 < 𝑖 < 𝑛, belong to 𝐿 as well. A topological

ordering of the graph 𝐺 is compact if it is both dominance and loop compact with respect to all

dominance sets and loops.

Function compact_order, in Figure 5 produces a compact topological ordering “Index” of the
vertices in graph G. This function uses an auxiliary routine, topological_sort, to produce some

topological ordering of the nodes in a graph. Our code also assumes the existence of an “idom”
relation, such that idom(𝑣,𝑢) is true if 𝑣 is the immediate dominator of 𝑢. We say that 𝑣 is the

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

def compact_order(G, entry):
 tsort = topological_sort(G)
 end = len(tsort)
 def schedule(u, start):
 bidx = [u]
 for i in range(start, end):
 v = tsort[i]
 if G.idom(v, u): # v is idom.
 bidx += schedule(v, i + 1)
 return bidx
 return schedule(tsort[0], 0)

def min_index(set, idx):
 return first(i for i in idx if i in set)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

def linearize(G):
 Index = compact_order(G, G.entry)
 GL = Graph(G.num_vertices)
 D = set() # The set of deferred edges
 for b in Index:
 T = {s for (v, s) in D if v == b}
 if G.is_uniform(b):
 for s in G.successors(b):
 nxt = min_index(T+{s}, Index)
 GL.add_edge(b, nxt)
 D = D + {(nxt,t) for t in T+{s}\{nxt}}
 else: # b is divergent or is unconditional
 S = G.successors(b)
 if (S):
 nxt = min_index(T+S, Index)
 GL.add_edge(b, nxt)
 D = D + {(nxt, t) for t in T+S\{nxt}}
 D = D \ {(v, s) for (v, s) in D if v == b}
 return GL

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Fig. 5. Partial Control-Flow Linearization. linearize(G) produces a graph GL that is a linearized version
of G. A preprocessing step removes the back-edges in G before linearization; hence, linearize receives an
acyclic graph.

immediate dominator of node 𝑢 if, and only if, 𝑣 dominates 𝑢, and for any other node 𝑡 that also

dominates 𝑢, 𝑡 also dominates 𝑣 .

Function linearize in Figure 5 builds a graph GL that is a linearized version of the graph G.
Once a compact ordering “Index” of the vertices in the CFG is built, the function linearize, in
Figure 5 visits this sequence of nodes in order. The algorithm keeps a set D of deferred edges, which
are edges that point to attractors: vertices that will attract the next nodes yet to be visited. Once

attractors are connected to the linearized graph, edges pointing to them are removed from D. The
successors of uniform branches can still change (Lines 23-26); however, the out-degree of those

branches remains the same. Divergent branches undergo more extensive changes: they keep only

one successor (Lines 29-32). The links that disappear are added to the set of deferred edges; hence,

these successors become attractors to be eventually reintegrated into the linearized graph.

Example 3.4. Figure 6 shows the order in which edges are added to the linearized graph. The

original edges are mostly kept, except when node 2 is visited (b = 2) in Line 19 of Figure 5. Node 2
contains a divergent branch. Thus, the node nxt of the smallest index among the attractors and

successors of 2 is chosen to bear the edge that leaves node 2 (Lines 27-31 in Figure 5). The other

successors 𝑠 of node 2 are marked as targets of edges nxt→ 𝑠 in the set D of deferred edges.

4 FROM PCFL TO SCE
This section shows how we use partial control-flow linearization (PCFL) to perform side-channel

elimination (SCE). This exposition will rely on nomenclature typically adopted in compiler text-

books, which we revisit in Section 4.1. Our explanations happen on top of a minimalistic program-

ming language — subject of Section 4.2. The remaining sections of this paper (§4.3 – §4.7) describe

the other steps of the proposed code transformation. Figure 7 lists these steps. We omit two of these

phases from our paper, because they have been described in previous work. The array-bounds

analysis that we use to infer the length of arrays is described in the work of Sperle Campos et al.

[2016]. Our transformation updates the interface of functions to receive these inferred lengths. This

step is described in the work of Soares and Pereira [2021]. Our presentation is constructed around

the example program in Figure 9, p. 14. The goal of this paper is to convert this program into the

semantically equivalent program in Figure 22, p. 27.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

10

3

4 5

2

10

3

4 5

2

10

3

4 5

2

10

3

4 5

2

10

3

4 5

2

10

3

4 5

2

b = 0, D = {} b = 1, D = {}

b = 2, D = {} b = 4, D = {4→5} b = 5, D = {}

remove back edge

b = 3 (no changes)

Fig. 6. Sequence of steps that function linearize in Figure 5 performs on the program from Figure 4, given
that Index = [0, 1, 3, 2, 4, 5].

4.1 Preliminaries
Partial Control-Flow Linearization works on programs containing loops; however, it requires

said loops to be Natural. Although a natural loop is a well-established concept [Appel 1997],

Definition 4.1 revisits it for the sake of completeness. Throughout the paper, we shall adopt the

same terminology used in the LLVM documentation
4
when referring to Natural Loops.

Definition 4.1 (Natural Loop). A control-flow Graph (CFG) is a directed graph with an entry node

start. If𝐺 is a CFG, then a loop 𝐿 ⊆ 𝐺 is a strongly connected subgraph of𝐺 . 𝐿 is called natural if it
contains a header ℎ such that every path from start to any node 𝑣 ∈ 𝐿 goes through ℎ.

As a consequence of Definition 4.1, the header dominates all nodes in the loop. Most loops in pro-

grams will be natural: they are produced by statements like while, do-while, for and foreach. The
creation of non-natural loops usually requires abusing the go-to statement. The original description

of partial control-flow linearization also requires loops to have unique latches (see Definition. 4.2).
This requirement can be met for any program via a standard compiler transformation, which we

shall not explain further in this paper.

Definition 4.2 (Loop Terminology). A Forward Edge is an edge from a node outside the loop to the

loop header. A Back Edge is an edge from a node inside the loop to the loop header. A Latch is the

source of a back edge. An Exiting Edge is an edge from inside the loop to a node outside of it. The

source of an exiting edge is called an Exiting Block. Similarly, the destination of an exiting edge is

called an Exit Block.

4.2 Baseline Language
Figure 8 shows the syntax of the toy language that will be used to explain our ideas. In Figure 8, {}

indicates zero or more occurrences, [] denotes optional terms, id represents names of variables, 𝑛

4
https://llvm.org/docs/LoopTerminology.html

, Vol. 1, No. 1, Article . Publication date: March 2023.

https://llvm.org/docs/LoopTerminology.html

Side-Channel Elimination via Partial Control-Flow Linearization

Tainted flow analysis
Section 4.3

Array-bounds analysis
Sperle Campos et al. [2016]

Predication analysis
Section 4.4

Rewrite loads/stores
Section 4.7

Partial linearization
Section 4.5

Rewrite phi-function
Section 4.6

Identifies which branches need to be linearized.

Finds out symbolic bounds for arrays. We use the analysis
described in Section 3.2 of Sperle Campos et al. [2016].

Finds out which conditions control the execution
of each edge of the program's CFG

Linearizes the program's CFG, adapting Moll and Hack [2018]’s
algorithm.

Rewrites load/store instructions in the influence region of tainted
branches (discovered in step 1), potentially replacing unsafe
memory accesses (discovered in step 2) with the shadow memory.

Rewrite phi-functions that became invalid due to partial linearization.

Rewrite interfaces
Soares and Pereira [2021]

Add size information to arrays, replacing each pointer p, used as a
function argument, with a struct containing p, plus its size, inferred
in step 2. See Section III.C of Soares and Pereira [2021].

Fig. 7. Overview of the linearization approach proposed in this paper.

stands for numerals, and ℓ ranges over basic block labels. In this paper, we assume all programs to

be in the Static Single Assignment (SSA) form [Cytron et al. 1989].
5
Thus, every variable has a single

definition site and the definition of a variable dominates all its uses. To meet these properties, the

toy language is equipped with phi functions — special instructions that join multiple definitions of

the same variable. In addition, the language provides a ctsel (constant-time selector) operation,

which is parameterized by a condition 𝑐 , such that ctsel 𝑐, 𝑣𝑡 , 𝑣 𝑓 ≡ 𝑣𝑡 if 𝑐 ≡ true or 𝑣 𝑓 otherwise.6

We represent stores with a left arrow instead of an equal sign to distinguish them from simple

assignments. For convenience, we write stores of the form v[0] ← 𝑒 as v← 𝑒 . Example 4.3 shows

a program in our toy language.

Example 4.3. The code in Figure 9 (a) compares a user’s guess g with the secret password pw.7 It
returns true if g equals pw. Function oFdF immediately returns false if the test at Line 5 evaluates

to true. Hence, oFdF might leak the secret password due to the non-constant behavior of the loop

at Lines 4–5. Figure 9 (b) shows the implementation of function oFdF in our toy language.

4.3 Tainted-Flow Analysis
PCFL was first devised to eliminate divergent branches from programs. In the context of side-

channel resistance, however, we are interested in tainted branches. Our toy language defines two

5
The SSA assumption is not a necessary condition to enable the code transformation described in this paper. Nevertheless,

we assume it for convenience, because this format is adopted in the LLVM program representation.

6
We treat zero as false and any integer different from zero as true.

7
The code depicted in Fig. 9 is merely used as an example. Bear in mind that passwords should never be stored as plain text.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

Program ::= { BasicBlock }
BasicBlock ::= ℓ : { Instruction } Terminator

Instruction ::= id = public | id = secret | id = 𝐸𝑥𝑝𝑟

| id = id ′[′Value ′] ′ | id ′[′Value ′] ′← 𝐸𝑥𝑝𝑟

| id = phi ′[′ Expr, ℓ ′] ′ { , ′[′ Expr, ℓ ′] ′ }
| id = ctselValue,Value,Value

Terminator ::= br [Value, ℓ,] ℓ | halt
Expr ::= Value | unopValue | Value binopValue
Value ::= true | false | 𝑛 | id

Fig. 8. Syntax of the baseline language used to design the isochronous transformation. We use prime markers,
e.g., ′] ′ to delimit terminal symbols.

1 / / g (g u e s s) i s p u b l i c .
2 / / pw (pas sword) i s s e c r e t .
3 in t oFdF (in t ∗ g , in t ∗pw , in t n) {
4 for (in t i = 0 ; i < n ; i ++)
5 i f (g [i] ! = pw[i]) return 0 ;
6 return 1 ;
7 }

begin: g = public
pw = secret
n = public
r = public
br header

header: i0 = phi [0, begin], [i1, latch]
p0 = i0 < n
br p0, body, ret.true

latch: i1 = i0 + 1
br header

body: g.i = g[i0]
pw.i = pw[i0]
p1 = g.i != pw.i
br p1, ret.false, latch

ret.false: br end

ret.true: br end

end: x = phi [false, ret.false], [true, ret.true]
r← x
halt

a b

Fig. 9. (a) Password comparison function that leaks information due to the conditional branch on secret input
pw. This code is the same seen in Figure 2 (a) — we copy it to facilitate the understanding of the control-flow
graph on the right. (b) Control-flow graph of the password comparison function.

instructions, secret and public, which we shall use to separate tainted from non-tainted variables.

Definition 4.4 categorizes these concepts.

Definition 4.4 (Tainted Information). The backward slice of a variable 𝑥 is the transitive closure of

its control and data dependencies (see Definition 2.9). A variable is tainted if its backward slice

contains a secret value. A branch whose condition uses a tainted predicate is said to be tainted.
A basic block that ends with a tainted branch is a tainted block. A loop that contains an exiting

tainted block is a tainted loop.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

There are standard static analyses that can be used to identify tainted branches [Almeida et al.

2016; Rodrigues et al. 2016]. However, these techniques are orthogonal to the transformation

presented in this paper, and shall not be discussed further. In practice, we use the information

analysis of Rodrigues et al. to label variables as either tainted or non-tainted. Example 4.5 illustrates

how this analysis works.

Example 4.5. Input pw is defined as secret in Figure 9. Since the definition of predicate p1 relies

— indirectly, through pw.i — on pw, the conditional branch at the end of the basic block body is
tainted. If a conditional branch is tainted, then the program might contain a timing leak, following

the tainted-flow may-analysis of Rodrigues et al.. In the opposite direction, if the program contains

no tainted conditional branch, then it does not contain timing leaks, according to that static analysis.

One could think that, because the predicate p1 controls whether or not the execution of the program
flows back to the loop header, then the definition of i0 — which is used to index arrays g and pw —

is control dependent (Definition 2.9) on a secret, and therefore should be tainted (Definition 4.4).

This, however, is not the case: the variable i0 starts with zero and, as the loop executes, is always

incremented by one; hence, the value of i0 inside the loop does not depend on the branch governed

by p1. However, if i0 was used after the loop, then its value outside the loop would be control

dependent on p1, since the value of i0 outside the loop might vary due to the tainted branch

controlled by p1. In this scenario, i0 would be clean inside the loop and tainted after the loop.

There is an analogue when we do divergence analysis too: a variable can be uniform inside a loop

and divergent outside it. The original formulation of divergence analysis [Sampaio et al. 2014]

would use special instructions, called 𝜂 functions, to split the live ranges of variables inside and

outside loops. These different versions of the same variable could then be mapped to a uniform

abstract state within the loop and a divergent abstract state outside it. In our case, phi-functions fill

the role of 𝜂 instructions.

4.4 Predication
We let the side effects of a program be the set of state modifications that said program carries out

on the machine that it controls. In the context of this work, side effects are memory writes. If 𝑃 is

a program and 𝑃𝑙 is the partial linearization of 𝑃 , then we want both 𝑃 and 𝑃𝑙 to have the same

side effects when given the same public inputs. To achieve this property, we need to ensure that

instructions of 𝑃𝑙 only cause side effects when their counterparts in 𝑃 do. For that, we resort to

predication, a classic compiler transformation already mentioned in Example 3.2.

In this paper, predication is implemented via the ctsel instruction, whose syntax Figure 8 shows.

This instruction is controlled by a boolean condition. To find the boolean associated with each

instruction that requires predication, we introduce the notions of edge and block conditions. We

start by formalizing these concepts in Definition 4.6 for loop-free programs. Later, in Figure 12

(Page 17), we shall define these conditions for programs with loops.

Definition 4.6 (Block & Edge Conditions). The block condition BC (𝑣) determines when block

𝑣 executes. The edge condition EC (𝑢 → 𝑣) determines when the edge 𝑢 → 𝑣 is traversed. The

equations in Figure 10 define these mutual relations.

Example 4.7. Figure 11 shows the CFG of a simplified version of function oFdF seen in Figure 9 (a),
with n = 2 and the loop unrolled. Each edge is labeled with its corresponding edge condition. Block

if.0 always executes; hence, its block condition is true. Block if.1 executes whenever p0 is false;
thus, its block condition is p0. The block condition of end is the disjunction (p0∨(p0∧p1))∨(p0∧p1),
which reduces to true, since block end always executes.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

terminator (ℓ) = br𝑝, ℓ ′, _
EC (ℓ → ℓ ′) = BC (ℓ) ∧ 𝑝

terminator (ℓ) = br𝑝, _, ℓ ′

EC (ℓ → ℓ ′) = BC (ℓ) ∧ 𝑝
terminator (ℓ) = br ℓ ′

EC (ℓ → ℓ ′) = BC (ℓ)
predecessors(ℓ) = {ℓ1, . . . , ℓ𝑛}

BC (ℓ) =
𝑛∨
𝑗=1

𝐸𝐶 (ℓ𝑗 → ℓ)

Fig. 10. Block and edge conditions. Function predecessors(ℓ) gives the blocks that are predecessors of block ℓ .
Function terminator (ℓ) returns the last instruction of the block labeled by ℓ (see Fig. 8).

begin: g = public
pw = secret
n = public
r = public
br if.0

if.0: g.0 = g[0]
pw.0 = pw[0]
p0 = g.0 != pw.0
br p0, ret.false, if.1

if.1: g.1 = g[1]
pw.1 = pw[1]
p1 = g.1 != pw.1
br p1, ret.false, end

ret.false: br end

end: x = phi [false, ret.false], [true, if.1]
r← x
halt

true

p0

p0
p0
∧
p1

p0 ∧ p1

p0
∨
(p0

∧
p1)

Fig. 11. CFG of function oFdF from Figure 9 (a), with n = 2 and the loop unrolled. Edges are labeled with
edge conditions.

4.4.1 From Loop-Free to General Programs. Figure 10 models edge and block conditions of loop-free

programs. Once loops are introduced, it becomes necessary to account for the fact that the same

control-flow edge might be traversed multiple times. This fact requires adjustments when modeling

the conditions associated with loop headers and tainted loop exits. These adjustments will ensure

that Property 4.8 holds.

Property 4.8 (Loop Termination). If 𝑃𝑙 is the partial linearization of a program 𝑃 , then any loop
of 𝑃𝑙 can only terminate due to non-tainted (i.e. public) predicates. If, during the execution of program
𝑃 , a loop 𝐿 would have exited through a tainted edge 𝑢 → 𝑣 , then the rest of the iterations of 𝐿 in the
linearized program 𝑃𝑙 shall produce no side effects.

To model the fact that blocks and edges in loops might be predicated with multiple conditions,

we associate these block and edge conditions with a number 𝑖 . BC𝑖 (ℓ) corresponds to the block

condition of ℓ at its 𝑖-th execution (similarly for 𝐸𝐶𝑖). In this sense, the definitions seen in Figure 10

correspond to 𝐸𝐶𝑖 and 𝐵𝐶𝑖 , 𝑖 ≥ 1. Figure 12 shows the definition of 𝐸𝐶𝑖 and 𝐵𝐶𝑖 for, respectively,

tainted exiting edges and loop headers.

Example 4.9. Figure 13 shows the edge and block conditions, as computed by the rules in

Figure 12 when applied over function oFdF, from Figure 9. In this example, we assume that the

public parameter n contains the value 2. Thus, the loop iterates twice and the header block is visited
three times.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

type(ℓ→ ℓ ′) = Exiting Edge tainted (𝑝) terminator (ℓ) = br𝑝, ℓ ′, _
EC𝑖=1 (ℓ → ℓ ′) = BC (ℓ) ∧ 𝑝

type(ℓ→ ℓ ′) = Exiting Edge tainted (𝑝) terminator (ℓ) = br𝑝, ℓ ′, _
EC𝑖>1 (ℓ → ℓ ′) = EC𝑖−1 (ℓ → ℓ ′) ∨ (BC (ℓ) ∧ 𝑝)

type(ℓ→ ℓ ′) = Exiting Edge tainted (𝑝) terminator (ℓ) = br𝑝, _, ℓ ′

EC𝑖=1 (ℓ → ℓ ′) = BC (ℓ) ∧ 𝑝
type(ℓ→ ℓ ′) = Exiting Edge tainted (𝑝) terminator (ℓ) = br𝑝, _, ℓ ′

EC𝑖>1 (ℓ → ℓ ′) = EC𝑖−1 (ℓ → ℓ ′) ∨
(
BC (ℓ) ∧ 𝑝

)
type(ℓ) = Header predecessorsf (ℓ) = {ℓ1, . . . , ℓ𝑛}

BC𝑖=1 (ℓ) =
𝑛∨
𝑗=1

EC (ℓ𝑗 → ℓ)

type(ℓ) = Header predecessorsb (ℓ) = {ℓ1, . . . , ℓ𝑛}

BC𝑖>1 (ℓ) =
𝑛∨
𝑗=1

EC (ℓ𝑗 → ℓ)

Fig. 12. Recursive definitions of block and edge conditions for headers and tainted exiting edges. Function
predecessors𝑓 is related to forward edges and predecessors𝑏 to back edges. When written without subscripts,
BC (ℓ) (similarly for EC) refers to the last execution of block ℓ .

Loop Headers. Figure 10 does not work for loop headers. That is because, when dealing with loops,
forward and back edges (see Definition 4.2) play different roles: only forward edges can be traversed

to enter a loop and only back edges can be traversed to continue to the next iteration of the loop.

But, the original definition of block condition is the conjunction of all the conditions from incoming

edges (see Figure 10). Figure 12 adjusts the definition of block conditions, to distinguish between

forward edges and back edges in the case of loop headers as follows: if ℓℎ is a loop header, then

BC𝑖 (ℓℎ), in iteration 𝑖 , is the disjunction of all the forward-edge conditions (if 𝑖 = 1) or back-edge

conditions (if 𝑖 > 1) that reach ℓℎ . Since back-edge conditions implicitly carry the previous block

condition BC𝑖−1 (ℓℎ) of ℓℎ , as soon as one iteration of the loop becomes false, all the subsequent

iterations will be false too. Example 4.10 provides more details.

Example 4.10. The edge condition of begin → header is true in Figure 13. Hence, if we use

Figure 10 to compute BC (header), it will always be true. As a result, body would always be able

to produce side effects, even when not supposed to. Thus, when computing BC𝑖 (header), 𝑖 > 1,

the rules in Figure 12 uses latch → header, the back edge, but not begin → body, the forward
edge. The condition of the second execution of header becomes p0

1
∧ p1

1
, and the condition of the

third visit becomes p0
1
∧ p1

1
∧ p0

2
∧ p1

2
. Notice how conditions of previous iterations contribute

to compose the condition of the current iteration of the loop.

Tainted Exiting Edges. Figure 10 does not work for tainted exiting edges. Due to Property 4.8, if

loop 𝐿 exits through a tainted edge 𝑢 → 𝑣 , then node 𝑣 should be the only exit with a true block

condition in 𝑃𝑙 , once 𝐿 terminates. To meet this property, Figure 12 modifies Figure 10 as follows:

if ℓ → ℓ𝑥 is a tainted exiting edge, then EC (ℓ → ℓ𝑥) is the disjunction of all the edge conditions

of ℓ → ℓ𝑥 at every iteration of the loop. Thus, as soon as one such condition becomes true for

the first time, it will remain true during the entire execution of the partially linearized loop. And,

more importantly, no other different tainted edge condition of that loop will ever become true.

The predicate that has enabled ℓ → ℓ𝑥 disables ℓ → ℓ𝐿 , the edge that points to inside the loop.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

begin: g = public
 pw = secret
 n = public
 r = public
 br header

header: i0 = phi [0, begin], [i1, latch]
 p0 = i0 < n
 br p0, body, ret.true

body: b.i = g[i0]
 pw.i = pw[i0]
 p1 = g.i != pw.i
 br p1, ret.false, latch

latch: i1 = i0 + 1
 br header

header: i0 = phi [0, begin], [i1, latch]
 p0 = i0 < n
 br p0, body, ret.true

body: b.i = g[i0]
 pw.i = pw[i0]
 p1 = g.i != pw.i
 br p1, ret.false, latch

latch: i1 = i0 + 1
 br header

header: i0 = phi [0, begin], [i1, latch]
 p0 = i0 < n
 br p0, body, ret.true

ret.true: br end ret.false: br end

end: x = phi [false, ret.false], [true, ret.true]
 r ← x
 halt

true

p01

p03 ∧ b3 [b4]

BC1(header) = true

BC2(header) = b1

BC3(header) = b3

p01 ∧ p11 [b5]

p12 ∧ b2 [b6]

b3

p12 ∧ b2 [b3]

p02 ∧ b1 [b2]

b1

p01 ∧ p11 [b1]

b4

b5 ∨ b6 [b7]

b7

Fig. 13. Block and edge conditions computed on function oFdF from Fig. 9. We assume that n, the public
parameters that controls the number of loop iterations, holds value two. We use 𝑒 [b] on some edges to denote
that b is an alias for the boolean condition 𝑒 , to simplify the figure.

Consequently, the edge condition of ℓ → ℓ𝐿 becomes false, and it is propagated inside the loop,

making the next iterations “dummy”.

Example 4.11. Going back to Figure 13, lets us assume that EC1 (body→ ret.false) is true. In
other words, the loop should stop thru the tainted exiting edge right in the first iteration. However,

Property 4.8 forbids this early exit. Indeed, the code that we shall produce will traverse all the

solid edges in Figure 13, but always with false conditions. Thus, from the moment that body is

first visited onwards, all the edge and block conditions in the loop become false, while every

EC𝑖 (body→ ret.false), 𝑖 > 1 remains true. As a consequence, EC (ret.true→ end) is false, for
it is the conjunction of three false predicates, and EC (ret.false→ end) is true, for it includes b5,
which was the first exit condition to be true.

Intuitively, conjunctions are applied whenever a whole set of conditions must hold for an

instruction to be executed. For instructions outside loops, we conjunct the set of conditions of every

branch leading to that instruction. For instructions inside loops, this set also includes the conditions

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

of different iterations of these loops. In Figure 14, the variables bc.header, bc.body and bc.latch
accumulate these conditions. In contrast, disjunctions are used every time the execution of an

instruction requires one of the conditions in the set to be true (i.e. when there are multiple paths

that lead to that instruction). In the case of tainted edges that exit loops, there are multiple routes

that lead to that exit, hence the use of disjunctions. In Figure 14, variable ec.body_ret.false
accumulates these disjunctions. Notice that disjunctions are not necessary when dealing with clean

exiting edges, since that exit will still exist in the final, repaired program.

4.4.2 Materializing Block/Edge Conditions. The rules from Figures 10 and 12 establish how block

and edge conditions shall be computed, according to the types of the blocks and edges. However,

these conditions cannot be determined statically, and thus we must materialize them into code that

will be embedded into the final, repaired program. Example 4.12 illustrates this process.

Example 4.12. Figure 14 shows the program from Figure 9 augmented with code to compute all of

its block and edge conditions. Following the rules for loop headers (Figure 12), the block condition

of header is either the edge condition from begin to header (forward edge, first iteration), which

is always true, or the edge condition from latch to header (back edge, subsequent iterations),

which is just the block condition of latch. The edge from header to ret.true is clean, and thus

its condition is defined according to the rules from Figure 10: it is the conjunction of the predicate

p0 and the block condition of header. In contrast, the edge from body to ret.false is tainted;
hence, its condition follows the rules from Figure 12: it is the disjunction of the values of the edge

condition from body to ret.false at each iteration of the loop.

The code from Figure 14 contains extra booleans that keep track of edge and block conditions

across iterations of the loop. However, this code is not yet linearized. In the next sections, we show

how that program can be partially linearized, and how the booleans mentioned in Example 4.12 are

used to predicate the other instructions. As already explained, predication will ensure that original

and transformed codes have the same set of side effects.

4.5 Control-Flow Linearization
The control-flow graph of the partially linearized program must be rewritten, so that original and

transformed programs carry out the same set of side effects. These rewriting rules entail a number

of properties concerning the elimination of time-based side channels, which Theorems 4.16 and 4.26

summarize. Additionally, these transformations preserve semantics of terminating programs, as

Theorem 4.13 states. Proofs of these theorems are available as supplementary material.

Theorem 4.13 (Semantics). Let 𝑇 (𝑃) = 𝑃 ′ be the partial linearization of program 𝑃 with instruc-
tions rewritten, as described in §§4.6 and 4.7. If 𝑃 ′ terminates, then programs 𝑃 and 𝑃 ′ produce the
same set of side effects.

Proofs of Lemmas and Theorems are given in Appendix A.

4.5.1 Finding a Compact Ordering. Partial Control-Flow Linearization demands a compact ordering

(see Definition 3.3), which implies dominance compactness and loop compactness. The former is

guaranteed by function compact_order seen in Figure 5. To attain the latter, we collapse all loops

into single nodes, producing a new graph structure with two types of nodes — basic blocks and

loops. Loop nodes, by construction, are compact. Hence, we can apply compact_order to the root

CFG as well as to every loop node and then join the compact orderings obtained, as Example 4.14

shows.

Example 4.14. Figure 15 shows the linearization of the CFG of function oFdF from Figure 9. We

first collapse the loop formed by nodes header, body and latch into a single node L. Loop L is

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

begin: g = public
pw = secret
n = public
r = public
br header

header: i0 = phi [0, begin], [i1, latch]
bc.header = phi [true, begin], [bc.latch, latch]
ec.body_ret.false =
phi [false, begin], [ec.body_ret.false”, latch]

p0 = i0 < n
br p0, body, ret.true

latch: p1.neg = !p1
bc.latch = bc.body & p1.neg
i1 = i0 + 1
br header

body: bc.body = bc.header & p0
g.i = g[i0]
pw.i = pw[i0]
p1 = g.i != pw.i
ec.body_ret.false’ = bc.body & p1
ec.body_ret.false” =
ec.body_ret.false || ec.body_ret.false’

br p1, ret.false, latch

ret.false: bc.ret.false = ec.body_ret.false
br end

ret.true: bc.ret.true = bc.header & !p0
br end

end: x = phi [false, ret.false], [true, ret.true]
bc.ret.false’ = phi [bc.ret.false, ret.false], [false, ret.true]
bc.ret.true’ = phi [false, ret.false], [bc.ret.true, ret.true]
bc.end = bc.ret.false’ | bc.ret.true’
r← x
halt

Fig. 14. Function oFdF from Figure 9, embedded with code that compute all of its block and edge conditions,
following the rules from Figures 10 and 12.

tainted because one of its exiting blocks — body — is tainted. We then produce a compact ordering

of the CFG with its loop collapsed, which Figure 15 (b) shows, as well as a compact ordering of L,
shown in Figure 15 (c). Since there is no tainted branch in the loop L, the loop is left unchanged.

The compact ordering for the CFG can be seen as the merge of the two compact orderings from (b)

and (c): begin, header, body, latch, ret.true, ret.false, end.

4.5.2 Rewriting Loop Exits. To deal with divergent loops (i.e. loops with divergent exiting blocks),

Moll and Hack [2018] merge every loop exit into a single exiting block at the end of the loop, which

becomes the new loop latch. The transformed loop then terminates only when all threads do. This

approach, however, leads to dummy execution of instructions that could have been avoided had

the public exits been preserved. In this paper, we follow a different path: we redirect every public
exiting edge of a tainted loop to the first exit block that appears in the compact ordering of the

basic blocks. The following example further clarifies our partial linearization:

Example 4.15. Figure 15 (d) shows the linearization of the CFG with the loop collapsed. Notice

that there is now a single edge leaving the loop L. This edge corresponds to every public exiting

edge of a loop. In this example, there is only one such edge from header to ret.true, but there
could be more. Figure 15 (e) shows the final version of the CFG.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

begin

headerlatch

body

ret.false

ret.true

end

begin

L

ret.false ret.true

end

header

body

latch

begin

L

ret.false ret.true

end

begin

headerlatch

body

ret.false

ret.true

end

a b c

d e

0

1
23

4

0

1

2

Fig. 15. (a) CFG of oFdF from Figure 9; dashed arrows represent back edges; gray nodes are tainted. (b) The
CFG with collapsed loop; numbers indicate the compact ordering. (c) Compact ordering of loop. (d) The
collapsed CFG after linearization. (e) Whole CFG after linearization.

In Example 4.15, the tainted branch at node body does not exist after linearization. Thus, the

transformed CFG is operation invariant according to Definition 2.2: regardless of secret inputs,

it runs the same sequence of instructions. This observation is not exclusive to Example 4.15. As

Theorem 4.16 states, partial linearization ensures operation invariance with regard to secret inputs.

Theorem 4.16 (PCFL Gives Operation Invariance). Let 𝑃𝑙 be the partial linearization of 𝑃 . 𝑃𝑙 is
operation invariant.

Partial control-flow linearization is optimal, in the sense that it only modifies tainted branches. In

other words, edges departing from branches that are controlled exclusively by public information

are not modified. This result follows as a corollary of Theorem C.1 in Moll and Hack [2018], as we

state it as Corollary 4.17. In fact, Moll and Hack’s result goes a bit beyond Corollary 4.17: there are

a few edges departing from tainted branches that shall remain present in the linearized control-flow

graph.

Corollary 4.17 (Optimality). Let ℓ be a basic block within a control-flow graph𝐺 = (𝐸,𝑉), such
that terminator (ℓ) = br𝑝, ℓ1, ℓ2 and not(tainted (𝑝)) is true. The edges ℓ → ℓ1 and ℓ → ℓ2 remain in
𝐸 after partial control-flow linearization.

4.5.3 On the Termination of Linearized Programs. As a consequence of Property 4.8, if every exit

condition of a loop is controlled exclusively by secret inputs, then linearization will transform it in

non-terminating code. If such is the case, then the generation of a non-terminating loop is statically

known: this event happens once every branch condition is identified as tainted by the analysis

of §4.3. Thus, generation of non-terminating code can be reported back to users. Example 4.18

illustrates this phenomenon.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

Example 4.18. The program in Figure 16 (a) contains a loop that has only one exit. This single

exit is dependent on secret information, which will be tagged as “tainted" by the flow analysis of

Section 4.3. This exit will be removed after linearization. Thus, partial control-flow linearization

will produce a program without exiting edges. Figures 17 (a) and (b) show, respectively, the CFG of

the loop depicted in function f before and after partial control-flow linearization. Notice that, by

looking at the CFG from Figure 17 (b), it is possible to detect that the loop will not terminate.

1 in t f (in t s e c r e t) {
2 . . .
3 for (in t i = 0 ; i < s e c r e t ; i ++) {
4 . . .
5 }
6 . . .
7 }
8

1 in t g (in t pub l i c , in t s e c r e t) {
2 . . .
3 for (in t i = 0 ; i < s e c r e t ; i ++) {
4 . . .
5 i f (p u b l i c) break ;
6 }
7 . . .
8 }

a b

Fig. 16. (a) Loop controlled exclusively by secret inputs. (b) Loop controlled by public and secret inputs. This
loop will not terminate after linearization if public == false.

The general consequence of Property 4.8 is that, after partial linearization, loops can only contain

exiting edges dependent on public data. Notice that if the conditions controlled by public data never

become true during the execution of the linearized loop, said loop will not terminate. Example 4.19

discusses this possibility.

Example 4.19. The program in Figure 16 (b) contains a loop with two exits: one controlled by

tainted information and another controlled by public data. The exiting edge controlled by secret

data will be removed by PCFL. Hence, if public == false, the linearized loop will run forever.

Discussion. By preventing control flow from leaving loops through edges controlled by tainted

data, our implementation of partial control-flow linearization ensures operation invariance with re-

gards to secret values. Previous linearization techniques either forgo loops altogether, as Lif [Soares
and Pereira 2021] and SC-Eliminator [Wu et al. 2018a] do, or handle them dynamically, like

Constantine [Borrello et al. 2021] does. The approach adopted by Constantine avoids non-

termination; however, it still allows leakage of secret information. Quoting Borrello et al. [2021]:

“we validate the prediction of the oracle: whenever real program paths wish to iterate more than 𝑘
times, we adaptively update 𝑘 allowing the loop to continue, and use the 𝑘 ′ seen on loop exit as the new
bound when the program reaches the loop again. The handling of this comparison is also linearized."
Nevertheless, whenever the control flow reaches the loop current upper bound, information about

secret data will leak. In this paper’s approach, the behavior of the loop controlled exclusively by

header: i0 = phi [0, pre_loop] [i1, latch]
p0 = i0 < secret
br p0, body, end_loop

latch: i1 = i0 + 1
br header

body: ...end_loop: ...

header: i0 = phi [0, pre_loop] [i1, latch]
p0 = i0 < secret
br body

latch: i1 = i0 + 1
br header

body: ...end_loop: ...

a b

Fig. 17. (a) CFG of the loop from Figure 16 (a) before PCFL. (b) CFG of the loop from Figure 16 (a) after PCFL.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

secret data will be the same regardless of these values: the loop will not terminate. Yet, a non-

terminating program has problems of its own, at which point the merits of our solution becomes

more a question of taste than effectiveness.

4.6 Rewriting Phi-Functions
As we have explained in §4.2, our transformation has been designed to operate on programs in the

Static Single Assignment (SSA) Form. The SSA representation uses phi functions to join definitions

of variable names that, in the original — pre-SSA transformation — code, would represent the same

memory location. The partial linearization of a program 𝑃 may lead to invalid phi functions in

the linearized version 𝑃𝑙 , for a predecessor of a block 𝑣 in 𝑃 may not be a predecessor of 𝑣 in 𝑃𝑙 .

Example 4.20 illustrates this issue.

Example 4.20. Figure 18 (a) shows a CFG before linearization, with block b marked as tainted.

Figure 18 (b) shows that CFG after PCFL. Linearization removes the edge 𝑑 → 𝑔; hence, reducing

the arity of the phi function at 𝑔 from three to two arguments. The rest of this section will explain

how the phi function must be rewritten.

a

b c

d: x1 = • f: x3 = •e: x2 = •

g: x = phi [x1, d], [x2, e], [x3, f]

a

cbd: x1 = •

f: x3 = •
e: x1’ = phi [x1, d], [undef, c]

x2 = •

g: x1” = phi [x1’, e], [undef, f]
x’ = phi [x2, e], [x3, f]
x = ctsel ec.d_e, x1”, x’

a b

Fig. 18. (a) CFG before linearization; block b is tainted. (b) CFG after linearization, with the phi function
at block g rewritten; variable ec.d_e stores the edge condition of edge 𝑑 → 𝑔 from the original graph (see
Definition 4.6, Figures 10 and 12).

Phi functions are parameterized by pairs of arguments. Thus, 𝑥 = phi[𝑒1, ℓ1], [𝑒2, ℓ2], . . . , [𝑒𝑛, ℓ𝑛]
exists at the beginning of a basic block ℓ , which has 𝑛 predecessors. If the program flow reaches ℓ

coming from ℓ𝑖 , then the phi function indicates that the assignment 𝑥 = 𝑒𝑖 must occur. The difficulty

arises because the linearized CFG 𝐺𝑙 might not contain the edge that, in the original graph 𝐺 ,

would connect ℓ𝑖 to ℓ . To deal with the elimination of edges, we split the arguments of the original

phi function into two sets 𝐾 and 𝑅. The former represents the arguments whose corresponding

blocks still are predecessors of ℓ in𝐺𝑙 . These arguments are safe to keep without modifications. 𝑅

contains arguments from blocks that are no longer predecessors of ℓ . The rules that rewrite phi

nodes rely on three helper functions split, fill and fold, which Figure 19 defines. Function Split, in
Fig. 19 separates the arguments of a phi node into the 𝐾 and 𝑅 sets. Let 𝜑 be the phi function to be

transformed and 𝜑𝑙 the new phi function that shall replace 𝜑 in 𝑃𝑙 . Arguments in 𝐾 are safe to be

transported to 𝜑𝑙 without any modifications, since the predecessor relation has not changed; thus,

we fill as much as possible of the arguments of 𝜑𝑙 with 𝐾 .

Dealing with missing edges. Function fill is responsible for moving the old arguments from 𝜑

to 𝜑𝑙 (unstarred version, third rule). Once all pairs from 𝐾 were consumed, we start filling the

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

𝐾 = {[𝑒𝑖 , ℓ𝑖] | ℓ𝑖→ ℓ ∈ 𝐸 (𝐺𝑙)} 𝑅 = {[𝑒𝑖 , ℓ𝑖] | ℓ𝑖→ ℓ ∉ 𝐸 (𝐺𝑙)}
split (x = phi [𝑒1, ℓ1], . . . , [𝑒𝑛, ℓ𝑛] @ ℓ,𝐺𝑙) = (𝐾, 𝑅)

� [𝑒𝑖 , ℓ𝑖] ∈ 𝐾 : ℓ𝑖 ∈ (ℓ ′ ∪ ℓ𝑠) ∃ [𝑒 𝑗 , ℓ𝑗] ∈ 𝑅 : reach𝐺 (ℓ𝑗 , ℓ ′)
fill(ℓ ′ ∪ ℓ𝑠, 𝐾, 𝑅,𝐺) = [SSAfy(𝑥 𝑗), ℓ ′]

� [𝑒𝑖 , ℓ𝑖] ∈ 𝐾 : ℓ𝑖 ∈ (ℓ ′ ∪ ℓ𝑠) � [𝑒 𝑗 , ℓ𝑗] ∈ 𝑅 : reach𝐺 (ℓ𝑗 , ℓ ′)
fill(ℓ ′ ∪ ℓ𝑠, 𝐾, 𝑅,𝐺) = [undef, ℓ ′]

∃ [𝑒𝑖 , ℓ𝑖] ∈ 𝐾 : ℓ𝑖 ∈ ℓ𝑠
fill(ℓ𝑠, 𝐾, 𝑅,𝐺) = ([𝑒𝑖 , ℓ𝑖], 𝐾, 𝑅) fill(∅, 𝐾, 𝑅,𝐺) ∗= (∅, 𝐾 ∪ 𝑅)

fill(ℓ𝑠, 𝐾, 𝑅,𝐺) = ([𝑒𝑖 , ℓ𝑖], 𝐾 ′, 𝑅′) fill(ℓ𝑠 \ ℓ𝑖 , 𝐾 ′, 𝑅′,𝐺)
∗
= (𝐴,𝑈)

fill(ℓ𝑠 ≠ ∅, 𝐾, 𝑅,𝐺) ∗= ([𝑒𝑖 , ℓ𝑖] ∪𝐴,𝑈)
y𝑖 = ctsel EC (ℓ𝑖 → ℓ), SSAfy(𝑒𝑖), 𝑥

fold (𝑥@ℓ, [𝑒𝑖 , ℓ𝑖] ∪𝑈)
∗
= fold (y𝑖@ℓ,𝑈) fold (𝑥@ℓ, ∅) ∗= 𝑥

split (x = phi . . .@ ℓ,𝐺𝑙) = (𝐾, 𝑅)
fill(predecessors𝐺𝑙

(ℓ), 𝐾, 𝑅,𝐺) ∗= ({[𝑒1, ℓ1], . . . , [𝑒𝑘 , ℓ𝑘]},𝑈)
fold (x = phi [𝑒1, ℓ1], . . . , [𝑒𝑘 , ℓ𝑘] @ ℓ,𝑈) ∗= z

rewrite𝜙 (x = phi . . .@ ℓ,𝐺,𝐺𝑙) = z

Fig. 19. Transformation rule for phi nodes. inst @ ℓ indicates that the instruction belongs to the block labeled
by ℓ . 𝐸 (𝐺) are the edges of graph 𝐺 . Fold relies on edge conditions (see Definition 4.6, Figures 10 and 12).

arguments of 𝜑𝑙 with set 𝑅. However, the basic blocks in 𝑅 are not predecessors of ℓ in 𝑃𝑙 anymore.

Hence, we need to adjust the pairs from 𝑅 before attaching them as arguments of 𝜑𝑙 . We proceed as

follows: if there is a block ℓ𝑗 in 𝑅 that reaches ℓ ′ (a predecessor of ℓ in𝐺𝑙) in the graph𝐺 (unstarred

version, first rule) then we replace ℓ𝑗 — the original predecessor associated with value 𝑥 𝑗 — with ℓ ′.
However, 𝑥 𝑗 might not be always available in ℓ ′, which could potentially break the SSA constraints.

Hence, we must guarantee that 𝑥 𝑗 is defined when the program flows to ℓ ′; we encapsulated that

as function SSAfy. If there is no such a block ℓ𝑗 (unstarred version, second rule), we associate the

(new) predecessor ℓ ′ with a special value undef, meaning that there is no incoming value for 𝜑

that relates to block ℓ ′. The starred version of fill applies fill to all the predecessors of ℓ in 𝐺𝑙 and

returns the arguments from 𝜑 that have not yet been linked to 𝜑𝑙 .

The third and final step for rewriting a phi function is to link with 𝜑𝑙 those arguments from 𝜑

that are still unlinked. This is accomplished with function fold, which uses the block conditions (see

Def. 4.6) of the old predecessors of ℓ to conditionally select between values. The transformation of

phi functions is thus the composition of split, fill and fold, and it is represented by function rewrite𝜙
in Fig. 19. Function rewrite𝜙 returns the variable that shall hold the value of 𝜑 in 𝑃𝑙 ; it is worth

noting, however, that there are intermediate instructions that must be added to the basic block as

well. Example 4.21 illustrates the transformation of phi nodes.

Example 4.21. The phi function at block g in Figure 18 (a) is rewritten in Fig. 18 (b). It is almost

intact, except for the argument [x1, d], because the edge 𝑑 → 𝑔 was deleted. A ctsel instruction

links the erased argument with the new phi function. The ctsel is parameterized by the edge

condition of 𝑑 → 𝑔, which in Figure 18 (b) is encoded as variable ec.d_e. Two new phi nodes are

created to preserve the SSA property, since x1 may not be available in blocks c and f. Notice that
x will never be assigned undef. To explain why such is the case, let us walk through Figure 18

(b) bottom-up: variable x is either assigned x’ or x”, out of which only x” can be undef. To be

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

assigned x”, it is necessary that the edge condition ec.d_e is true, which, in turn, requires that

edge 𝑑 → 𝑒 be taken. Walking upwards, x” can only be undef if the edge 𝑓 → 𝑔 was taken, and

there is no path 𝑑 → 𝑒 ⇝ 𝑓 . Therefore, x cannot be assigned undef through the incoming value

from f to g. It remains to analyze the case of x1’, which can only be assigned undef if the edge
𝑐 → 𝑒 was taken, and there is no path 𝑑 → 𝑒 ⇝ 𝑐 . In other words, the only path in which ec.d_e
is true is 𝑎 → 𝑏 → 𝑑 → 𝑒 → 𝑔, and it assigns a valid value to x1, x1’, x1” and, finally, x.

4.7 Rewriting Memory Operations
The transformation of memory operations has two goals. First, to guarantee that stores only modify

state in the linearized program 𝑃𝑙 when their counterpart would do the same in the original program

𝑃 . Second, to prevent the introduction of out-of-bound accesses in 𝑃𝑙 . In this work we linearize

programs partially; hence, not all memory operations need to be modified. To identify which

instructions require interventions, we rely on the influence region of basic blocks, a notion that

Definition 4.22 formalizes. We apply the rules from Figure 20 to loads and stores in the influence

region of tainted blocks.

Definition 4.22 (Influence Region). Given a directed graph 𝐺 with a unique exit vertex 𝑑 , we say

that vertex 𝑣 post-dominates vertex 𝑢 if every path from 𝑢 to 𝑑 must go through 𝑣 . The influence

region of a node 𝑢 is the set of all nodes in paths from 𝑢 to its post dominator 𝑣 , excluding 𝑢 and 𝑣 .

Example 4.23. The influence region of the tainted block body, from Figure 9 (b), is the set formed

by blocks in paths from body to its post dominator end: body, latch, header, ret.true and

ret.false. The block body is within its own influence region because it is inside a loop and thus

there are paths from body to end that go through body itself.

c = i < size(x) c′ = BC (ℓ) | c
i′ = ctsel c′, i, 0 a = ctsel c′, x, shadow

rewriteld (y = x[i] @ ℓ) = {y = a[i′], a, i′}
rewrite𝑙𝑑 (z = y[i] @ ℓ,𝐺) = {z, a, i′} x = ctselBC (ℓ), 𝑒, z

rewritest (y[i] ← 𝑒 @ ℓ) = a[i′] ← x

Fig. 20. Transformation rules for memory operations. Function rewriteld preserves loads’ memory safety,
while function rewritest preserves stores’ memory safety and make stores sound with respect to whether they
should or not take effect. Both rules rely on block conditions (see Definition 4.6, Figures 10 and 12). inst @ ℓ

indicates that the instruction belongs to the block labeled by ℓ .

Loads. Function rewriteld , in Figure 20, takes the original load and returns a new load that is

memory safe, plus the base address and the index that compose the new access. For that, we follow

Soares and Pereira [2021]’s approach: we replace memory accesses that should not occur — i.e. the

block condition is false — and are not safe with accesses to a shadow address. To determine whether

an access is safe or not, we need the size of the structure being manipulated. This can be obtained in

multiple ways, e.g. by inferring the size or by asking the user to provide it. Figure 20 abstracts away

this computation by relying on a function named 𝑠𝑖𝑧𝑒 . If the size of the value cannot be determined,

the access is still guaranteed to be safe, but it becomes data variant (see Theorem 4.26). In practice,

we conservatively estimate the size of LLVM arrays without user intervention, using the array-size

inference analysis of Sperle Campos et al. [2016].

Example 4.24. The load pw.i = pw[i0] in Figure 9 (b) must be transformed, because it is in the

influence region of a tainted block (see Example 4.23). Let bc.body store the block condition of

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

body and pw.size store the size of pw. Then, function rewriteld from Figure 20 transforms the

original code in Figure 21 (a) into the code in Figure 21 (b).

pw.i = pw[i0] c = i0 < pw.size
 c’ = bc.body | c
 j0 = ctsel c’,i0,0
 a = ctsel c’,pw,shadow
pw.i = a[j0]

pw[i0] ← x following load seen in part (b):
 x’ = ctsel bc.body,x,pw.i
a[j0] ← x’

a b c d

Fig. 21. (a) Original load from Fig. 9. (b) Transformed load. (c) Example of a store. (d) Transformed store.

Stores. Function rewritest , in Figure 20, takes the original store and produces a new store that is

both memory safe and sound with respect to side effects. We first create a safe load to get the current
value stored in that memory region (or in the shadow memory, depending on the circumstances).

Then, we use the block condition BC (ℓ) to select between the current value and the value to be

stored: if BC (ℓ) is true, the original store is performed, updating the value under that address and

producing a side effect; otherwise, the store is silent. Example 4.25 wraps up the transformation of

loads and stores presented in this section.

Example 4.25. Suppose that we had a store like pw[i0] ← x in block body in Figure 9 (b).

Following function rewritest from Figure 20, we first create a safe load, as shown in Example 4.24.

For convenience, let us reuse pw.i. The store will then be rewritten from the original code seen in

Figure 21 (c) into the sequence in Figure 21 (d).

Like previous work [Borrello et al. 2021; Cauligi et al. 2019; Soares and Pereira 2021], we cannot

transform a program that contains memory indexation data dependent on secret inputs. In other

words, we cannot transform the following code: int foo(secret v, int m[]): return m[v].
Quoting Cauligi et al. [2019], the above code is not “publicly safe” (see Definition 2.11) and cannot be

made data invariant (see Definition 2.4) using control-flow linearization. Data invariance, as stated

by Theorem 4.26, is guaranteed whenever the original program is publicly safe. If the program is

shadow safe, then data invariance is not guaranteed, as Example 2.12 (Page 8) has explained.

Theorem 4.26 (The Data Contract). Let 𝑇 (𝑃) = 𝑃 ′ be the partial linearization of 𝑃 with loads
and stores rewritten after Figure 20. If 𝑃 is publicly safe, then 𝑃 ′ is data invariant. If 𝑃 is shadow
safe, then either 𝑃 ′ is data invariant or there exist two input instances I1 = (S1,P) and I2 = (S2,P),
S1 ≠ S2, with corresponding traces of memory addresses 𝜏1 and 𝜏2 such that 𝜏1 [𝑖] = shadow or
(exclusive) 𝜏2 [𝑖] = shadow, for some 𝑖 .

Example 4.27. Figure 22 shows the transformed version of function oFdF that we obtain after

applying PCFL onto the control-flow graph seen in Figure 9 (b). Variables g.size and pw.size
hold the sizes of the arrays g and pw whenever function oFdF is invoked. If the length of the array

is not known statically, then its size variable is initialized with zero. Notice that the length does

not have to be a constant: it can be a symbolic expression. Every expression used to index an array

in the transformed code is compared against the length of that array. If the comparison returns

false and the block condition is false, the special variable shadow is used as a surrogate address.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

begin: g = public
pw = secret
n = public
r = public
shadow = public
g.size = public
pw.size = public
br header

header: i0 = phi [0, begin], [i1, latch]
bc.header = phi [true, begin], [ec.latch_header, latch]
ec.body_ret.false =
phi [false, begin], [ec.body_ret.false”, latch]

p0 = i0 < n
br p0, body, ret.true

body: bc.body = bc.header && p0
c0 = i0 < g.size
c1 = bc.body | c0
j0 = ctsel c1, i0, 0
a = ctsel c1, g, shadow
g.i = a[j0]
c2 = i0 < pw.size
c3 = bc.body | c2
j1 = ctsel c3, i0, 0
b = ctsel c3, pw, shadow
pw.i = b[j1]
p1 = g.i != pw.i
ec.body_ret.false’ = bc.body & p1
ec.body_ret.false” =
ec.body_ret.false | ec.body_ret.false’

br latch

latch: p1.neg = !p1
bc.latch = bc.body & p1.neg
ec.latch_header = bc.latch
i1 = i0 + 1
br header

ret.true: br end

ret.false: bc.ret.false =
ec.body_ret.false

br end

end: x = ctsel bc.ret.false,
false, true

r← x
halt

a

b

b

c

c

d

e

Fig. 22. Function oFdF from Figure 9 after PCFL and with the instructions rewritten. (a) The shadow memory
and the size of input pw, used in the transformation of a tainted load. (b) Computation of the block condition
of the loop header (§4.4, Figure 12). (c) Computation of the edge condition of the tainted exiting edge
body → ret.false (§4.4, Figure 12). (d) Predication of load instructions to ensure memory safety (§4.7,
Figure 20). (e) Transformation of a phi function (§4.6).

5 EVALUATION
This section evaluates the techniques described in this paper through five research questions:

RQ1: By how much does the proposed approach increase code size?

RQ2: What is the running time of applying the proposed transformation onto programs?

RQ3: How does the proposed approach impact the running time of programs?

RQ4: What are the security guarantees achieved by the proposed approach?

RQ5: How the general C programs compiled with the proposed approach compare with pro-

grams written in a domain-specific language for constant-time cryptography?

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

To provide perspective on our results, we compare them with those produced by Lif [Soares and
Pereira 2021], FaCT [Cauligi et al. 2019], SC-Eliminator [Wu et al. 2018a] and Constantine [Bor-

rello et al. 2021]. The last two tools aim at making programs data and operation invariant with

regard to their secret inputs. Our PCFL and Lif, in turn, only guarantee operation invariance,

although when handling publicly safe programs they also ensure data invariance. Code written in

the FaCT domain-specific language is, by construction, publicly safe; hence, FaCT delivers both op-

eration and data invariance for this class of programs. When presenting results for SC-Eliminator
and Constantine, we show how these tools fare with and without data-flow protection.

Hardware. Experiments run on an Intel(R) Core(TM) i5-1035G1 4-Core Processor, clocked at 3.6

GHz. L1 data and instruction caches have 128 KB. Main memory has 8 GB.

Software. The above hardware runs in Linux Manjaro 21.2.5 (5.16.14-1-generic x86_64). Our

program transformation plus Soares and Pereira [2021]’s (Lif) are implemented in LLVM 13.0.

We use a version of Lif downloaded from https://github.com/lac-dcc/lif/tree/artifact/cgo. We

use a version of Constantine downloaded from https://github.com/pietroborrello/constantine,

which is implemented in LLVM 9.0. SC-Eliminator is available as an ACM artifact at https:

//zenodo.org/record/1299357 using LLVM 3.9.1. However, due to problems to reuse that artifact,

we have downloaded SC-Eliminator directly from https://bitbucket.org/mengwu/timingsyn, and

have updated it to use LLVM 13.0. We use a version of FaCT downloaded from https://github.com/

PLSysSec/FaCT, which uses libraries from LLVM 6.0. These tools were downloaded on December

6th, 2021. Thus, results from this paper can be directly compared with Lif and SC-Eliminator,
for both use LLVM 13.0 to obtain the original bytecode that will be transformed. Constantine, on
the other hand, uses LLVM 9.0; hence, the starting bytecode file is not guaranteed to be the same.

To detect examples of operation variance, we use CTgrind, available at https://github.com/agl/

ctgrind, and CFGgrind, available at https://github.com/rimsa/CFGgrind. These tools are Valgrind [Nether-
cote and Seward 2007] plugins. To detect examples of data variance, we insert instrumentation in

the transformed programs to print the addresses that they access during execution. Instrumentation

is inserted in the intermediate representation of programs, via a pass that we have implemented.

In addition of linearizing the control-flow graph of programs, Constantine and SC-Eliminator
also try to eliminate memory-based side channels. SC-Eliminator does it by preloading data in

the beginning of functions; Constantine does it by traversing the entire buffer whenever a cell

within said buffer is read or written. Such interventions make code much slower and much bigger.

Thus, for fairness, we show results for these tools with and without data preloading. It is our

understanding that, once data linearization is disabled, SC-Eliminator and Constantine have the
same purpose as our implementation of PCFL.

Benchmarks. We use 13 benchmarks, including seven from Wu et al. [2018a]
8
. Each benchmark

has at least two inputs, with parts tagged as either public or secret. Two of the benchmarks, ssl3
and donna, are from the FaCT repository. We have translated them into C. We implemented the

four remaining benchmarks: hash-one, plain-many, plain-one and log-redactor, to exercise

control-flow constructs absent in Wu et al.’s collection. The benchmark plain-one corresponds to

the example that we have been using throughout the paper (Figure 9). Programs hash-one and

plain-many are variations of plain-one.
We handle, without any user intervention, all these benchmarks, except loki91. The original

implementation of loki91 contains a loop whose every exit is controlled by sensitive information;

hence, it is inherently leaky. To make loki91 amenable to linearization, we had to modify this

8
Section 5.5 uses one more program: crypto-secretbox, which we translated from FaCT. We omit this program from the

remaining experiments, because it cannot be linearized by tools other than our implementation of PCFL

, Vol. 1, No. 1, Article . Publication date: March 2023.

https://github.com/lac-dcc/lif/tree/artifact/cgo
https://github.com/pietroborrello/constantine
https://zenodo.org/record/1299357
https://zenodo.org/record/1299357
https://bitbucket.org/mengwu/timingsyn
https://github.com/PLSysSec/FaCT
https://github.com/PLSysSec/FaCT
https://github.com/agl/ctgrind
https://github.com/agl/ctgrind
https://github.com/rimsa/CFGgrind

Side-Channel Elimination via Partial Control-Flow Linearization

loop with a terminating condition based on public information. This condition is the maximum

16-bit integer, i.e., 32,767 iterations. Figure 23 illustrates this change. The transformation is safe:

once the secret condition triggers, further iterations become innocuous. In other words, as a

consequence of linearization, the loop stops producing side effects. The modification in Figure 23

was implemented manually, but we could have performed it automatically, if necessary to apply it

on more benchmarks. However, such pattern — a loop controlled exclusively by secret information —

is rare. Our implementation of PCFL handles all the 21 benchmarks used by Soares and Pereira

[2021] that are also available in Wu et al. [2018a]’s and Borrello et al. [2021]’s artifacts without

modification (again, except for loki91).

1 in t f (in t s e c r e t) {
2 . . .
3 for (in t i = 0 ; i < s e c r e t ; i ++) {
4 / / c ompu ta t i on
5 }
6 . . .
7 }
8

9

1 const in t LIMIT = 3 2 7 6 7 ;
2 in t mod i f i e d_ f (in t s e c r e t) {
3 . . .
4 for (in t i = 0 ; i < LIMIT ; i ++) {
5 i f (i >= s e c r e t) continue ;
6 / / c ompu ta t i on
7 }
8 . . .
9 }

Fig. 23. (a) Loop controlled exclusively by secret inputs (as shown in Figure 16). (b) Version of the loop
modified to ensure termination — similar change was performed in the benchmark loki91.

Numbers reported in this section refer to the transformed program after it is optimized with

LLVM opt -O3. The evaluation of security guarantees (§5.5) uses these optimized programs, in

binary format. The benchmarks contain code to initialize inputs and print outputs; however, our

numbers refer only to their kernels. Lif and SC-Eliminator cannot transform three benchmarks

due to unbounded loops: donna, ssl3 and loki91. One of the other benchmarks, plain-many,
when transformed by Constantine, Lif and SC-Eliminator crashes at running time. Furthermore,

for benchmark ssl3, Constantine produces code whose output is incorrect.

5.1 RQ1: Size of Transformed Code
Figure 24 reports the size of the programs produced by the different tools that we evaluate in this

paper. Size is measured by counting LLVM instructions in the intermediate representation of the

transformed kernel after optimizations run.

Considering only the nine benchmarks that SC-Eliminator and Lif handle, we generate 3,393

LLVM instructions. The original version of SC-Eliminator produces 97,772 instructions, whereas

SC-Eliminator’s CFL gives 76,004. Lif generates 138,079 instructions. It is worth remembering

that both SC-Eliminator and Lif were applied to a version of the programs with loops entirely

unrolled, for neither of the two tools can handle general loops; hence the higher number of instruc-

tions. The complete implementation of Constantine (CFL + DFL) yields 4,182 LLVM instructions,

while Constantine’s CFL outputs 3,293. When compiled with LLVM 13.0 at -O3, the original

13 benchmarks add up to 4,130 instructions, 2,977 of which corresponds to the subset of nine

benchmarks handled by all tools. In relative terms, our partial linearization increases code size

by 1.33x. Considering only the 11 benchmarks correctly handled by Constantine, Constantine’s
original and CFL-only implementations increase code size by, respectively, 2.73x and 2.64x.

5.2 RQ2: Transformation Time
Figure 25 shows the time (in milliseconds) that each technique evaluated in this paper takes to

transform programs. To provide the reader a baseline, we also show the time that LLVM takes to

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira
ha
sh
-o
ne

pl
ai
n-
m
an
y

pl
ai
n-
on
e

do
nn
a

ss
l3

lo
g-
rd
ct

3w
ay de
s

lo
ki
91

ca
st
5

di
jk
st
ra

fin
dm

ax

hi
st
.101

102

103

104

105

42 32

16

67
2

27
9

89
22
5

46
1

17
0

2,0
08

77
42

17

C
od

e
si

ze
 (n

um
be

r o
f L

LV
M

 in
st

ru
ct

io
ns

)

M
iss

in
g

M
iss

in
g

M
iss

in
g

M
iss

in
g

Fig. 24. Code size (in number of LLVM instructions) of transformed programs. Symbols in gray boxes show
tools that are missing for particular benchmarks. CTT refers to Constantine, SC refers to SC-Eliminator.
Orig refers to these two tools as originally implemented. CFL refers to these two tools with control-flow
linearization only — thus, closer to our implementation of PCFL in purpose. The figure uses log scale; hence,
for reference purposes, we include the actual size of the original programs, when compiled with LLVM 13.0 at
the -O3 optimization level.

apply all the optimizations at the -O3 level onto these programs. Numbers refer only to the time

taken by opt, LLVM’s optimizer, to run passes onto LLVM intermediate representation: it does not

include time to parse C or to generate machine code — roughly the same for all the approaches.

ha
sh
-o
ne

pl
ai
n-
m
an
y

pl
ai
n-
on
e

do
nn
a

ss
l3

lo
g-
rd
ct

3w
ay de
s

lo
ki
91

ca
st
5

di
jk
st
ra

fin
dm

ax

hi
st
.

101

102

103

104

100

105

16
.61 17

.41
15
.41 44

.28

25
.84

19
.39

22
.25 35

.46

22
.62 59

.73

20
.87

15
.97

16
.91

Tr
an

sf
or

m
at

io
n

tim
e

(m
s)

M
iss

in
g

M
iss

in
g

M
iss

in
g

M
iss

in
g

Fig. 25. Time (in milliseconds) to apply each transformation onto the benchmarks. To facilitate comparison,
the figure explicitly includes values for the time taken to run LLVM opt -O3 on each benchmark. The gray
boxes mark benchmarks that some tools could not handle.

Considering only the nine benchmarks that all tools can deal with, it takes, on average, 24.73

ms to apply opt -O3 onto each benchmark, without any transformation. Our PCFL technique

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

takes about 33.49 ms per benchmark. Lif, not counting the time to unroll loops, takes 271.61 ms.

The original implementation of SC-Eliminator takes 2,697.06 ms, whereas SC-Eliminator’s CFL
takes 2,149.28 ms. SC-Eliminator and Lif are slower because they operate on larger programs,

due to unrolling. Constantine’s CFL takes about 65.19 ms per benchmark. However, when we

consider the entire script used to apply Constantine — which includes everything from profiling

up to all the transformations that it applies — this number grows up to 2,045.22 ms. This total is the

summation of several independent passes that Constantine applies — some of them coming from

LLVM’s accompanying tools. Thus, LLVM bytecodes are read and traversed multiple times. We

understand that were these passes grouped into a single LLVM pass, Constantine could run faster.

5.3 RQ3: Performance of Transformed Code
Figure 26 shows the running time of transformed programs. Timing the benchmarkswas challenging:

except for loki91, they all run under less than 1 ms. We executed each benchmark 20 times

per tool, removed the two fastest and the two slowest samples per benchmark and averaged

the remaining 16 samples. We then used Student’s t-test [Gosset 1908] to check for statistically

significant results across all the three populations, pair-wisely. Assuming a confidence level of

99%, and considering only the nine benchmarks that SC-Eliminator and Lif can handle, we

could observe five results where the programs produced by our implementation of PCFL run

faster than those generated by SC-Eliminator’s CFL and six results where our approach performs

better than both SC-Eliminator’s original implementation and Lif. Lowering the confidence

interval to 0.95, we observe one additional benchmark for which our approach yields code that

runs faster than the code produced by SC-Eliminator’s CFL. The mean overhead introduced by

both SC-Eliminator and our PCFL is of 1.61x. The CFL-only version of SC-Eliminator adds

less overhead onto programs: 1.42x. Lif, on the other hand, generates code that is 3.74x slower.

Nonetheless, the expressive overhead promoted by Lif was hugely influenced by the benchmark

des (8.32x slower).

ha
sh
-o
ne

pl
ai
n-
m
an
y

pl
ai
n-
on
e

do
nn
a

ss
l3

lo
g-
rd
ct

3w
ay de
s

lo
ki
91

ca
st
5

di
jk
st
ra

fin
dm

ax

hi
st
.100

101

102

103

104

105

106

3.9
0

4.4
3

1.8
0

63
.24

11
.60

1.5
0

1.7
4 5.2

3

10
0,7
98
.0

2.6
1 6.6

3

1.2
3
4.45

R
un

ni
ng

 ti
m

e
of

 tr
an

sf
or

m
ed

 p
ro

gr
am

s
(µ

s)

M
iss

in
g

M
iss

in
g

M
iss

in
g

M
iss

in
g

Fig. 26. Running time (in microseconds) of transformed programs. To facilitate comparison, the figure
explicitly shows the running time of the original programs when compiled with LLVM 13.0. Symbols in gray
boxes show missing tools for particular benchmarks.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

Assuming a confidence level of 99%, our technique performs better than both Constantine’s
original and CFL-only implementations in six out of the 11 benchmarks correctly handled by

Constantine. By lowering the confidence interval to 0.95, we could observe one additional bench-

mark for which we produce faster code than Constantine (both versions). The overhead introduced
by Constantine with respect to the nine benchmarks that all tools can correctly deal with was

larger than ours: 4.62x for the original implementation and 1.94x for Constantine’s CFL-only
version. Similarly to the case of Lif, the huge overhead introduced by Constantine’s original tool
was heavily influenced by the benchmark histogram (12.26x slower). If we consider the 11 bench-

marks that Constantine handles, then its average overhead is of 2.24x (original) and 2.12x (CFL),

whereas the overhead imposed by our implementation of PCFL is of 1.17x — which is also the mean

overhead caused by our tool if we consider all the 13 benchmarks. However, most of the overhead

caused by Constantine happens in loki91. This is the benchmark with the largest number of

branches: 76, out of which 16 are tainted (See Borrello et al. [2021]’s Table 1). Constantine uses
more instructions than our implementation of PCFL: the linearized code that it produces, after

optimizations, contains 1,031 LLVM instructions, whereas the code that we produce contains 196.

The effects of this difference are amplified by the large trip count of loki91’s core loop: 32,767
iterations.

5.4 R4: Security Evaluation
To investigate if the different techniques evaluated in this section are strengthening the security

guarantees of programs, we use three tools: CTgrind [Langley 2010], CFGgrind [Rimsa et al.

2021], and an LLVM pass that instruments load and store operations. CTgrind and CFGgrind are
Valgrind plugins. The former checks if a program contains a branch that reads data tainted by

secret information. The latter counts the number of binary instructions executed per function. The

LLVM pass, a tool of our own craft, inserts instrumentation to print the addresses accessed by

the load and store operations present in the LLVM intermediate representation of programs. We

compare the strings of addresses produced by programs fed with two distinct inputs. Different

strings demonstrate data variance. Figures 27 and 28 subsume the results of the security analyses.

CTgrind: Columns Opr and Opr3 of Figure 27 summarize the results of CTgrind’s analysis.
CTgrind is a dynamic analysis tool; hence, it requires running each program. These programs

come with two inputs each. This experiment uses both. CTgrind reports that SC-Eliminator
failed to achieve operation invariance for two benchmarks: hash-one and histogram. We analyzed

the LLVM intermediate files produced by SC-Eliminator and confirmed that SC-Eliminator
indeed failed to linearize some of the tainted branches. In several benchmarks, CTgrind re-

ports that code produced by Constantine is not operation invariant. Debugging the code pro-

duced by Constantine is harder than analyzing the code produced by SC-Eliminator, because
Constantine’s code transformations are more extensive. We inspected the code that Constantine
produced for plain-only, our smallest kernel. In that case, Constantine uses memory cells whose

purpose is similar to our shadow memory. These blocks of memory are not initialized, but might

be used in conditional operations. In this case, CTgrind issues warnings because it considers as
tainted any memory that is not initialized. In spite of these results, we emphasize that the absence

of warnings issued by CTgrind does not demonstrate that the code has been correctly linearized: it

is still possible that different inputs cause tainted branches to be executed.

Data Variance: When probing data variance in Figure 27, we use an LLVM instrumentation

pass to verify if the sequence of addresses accessed by each kernel is the same, regardless of the

input. In this case, we consider the original versions of Constantine and SC-Eliminator, not
the versions that only do control-flow linearization. The column data in Figure 27 reports the

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

Data Opr Opr3 Cor Data Opr Opr3 Cor Data Opr Opr3 Cor Data Opr Opr3 Cor Data Opr Opr3
∞ N N Y SH Y Y Y 0 Y Y Y 0 N N Y ∞ N N
∞ N N Y SH Y Y X X X X X X X X X X X X
∞ N N Y SH Y Y Y SH Y Y Y ∞ N N Y 2048 Y Y
∞ N N Y 0 Y Y UL UL UL UL Y ∞ N N UL UL UL UL
0 N N Y 0 Y Y UL UL UL UL X X X X UL UL UL UL
∞ N N Y SH Y Y Y SH Y Y Y ∞ N N Y 0 Y Y
∞ N N Y 0 Y Y Y 0 Y Y Y 0 Y Y Y 0 Y Y
∞ N N Y 0 Y Y Y 0 Y Y Y 565 Y Y Y 0 Y Y
N/A N N Y N/A Y Y UL UL UL UL Y N/A Y Y UL UL UL UL
78812 Y Y Y 78812 Y Y Y 78812 Y Y Y 605 Y Y Y 605 Y Y
∞ N N Y SH Y Y Y SH Y Y Y 0 N N Y ∞ N N
∞ N N Y 0 Y Y Y 0 Y Y Y 0 Y Y Y 0 Y Y
∞ N N Y 3968 Y Y Y 3968 Y Y Y 605 N N Y 3968 N Y

Original PCFL Lif SC-EliminatorConstantine

hash-one
plain-many
plain-one
donna
ssl3

log-rdct
3way
des

loki91
cast5

dijkstra
findmax

histogram

N No: execution is not operation invariant Y Yes: execution was operation invariant

UL Program contains Unbounded Loop and cannot be linearized

X Tool/transformed program crashes

NA Not Available: the trace is too large to be processed

∞ Data traces contain a different number of addresses SH At least one pair of corresponding addresses uses Shadow Memory

14

Fig. 27. Security guarantees achieved by the different tools. Cor indicates if the transformed program
produces the same output as its original counterpart. Data is the largest difference between data addresses
in corresponding positions in the traces produced by the two inputs without compiler optimizations. The
subscript next to each number is the index of the most significant bit where addresses have diverged. Opr
refers to operation invariance without compiler optimizations, given two different inputs. Opr3 refers to
operation invariance at the LLVM opt -O3 optimization level, again, considering two different inputs.

maximum difference between corresponding addresses in the traces produced when the programs

run with the two different inputs. We could not compute this result for loki91: log generation stops

once traces reach 26.3GB of size. If the traces contain a different number of addresses, column data
reports ∞. If all the addresses match up perfectly, column data shows the number zero. If code

produced by Lif or PCFL accesses the shadow memory, column data reports “SH". Any difference

in these traces necessarily have one of the addresses equal to the shadow memory slot, which is

always the same address. Traces cover every address accessed by instructions in the linearized

parts of instrumented programs.

Two benchmarks, cast5 and histogram, are not shadow safe. Both use tables indexed by secret

inputs. As an example, histogram counts the frequency of characters in the sensitive input by

incrementing cells within an array of integers, e.g., c[sensitive_char % SIZE]++. Constantine
and SC-Eliminator can still generate data-invariant code to programs that are not shadow safe,

assuming the hit-miss threat model seen in Section 2. For instance, if we assume
9
that differences of

less than 64 in code produced by either Constantine or SC-Eliminator will be in the same cache

line, then benchmarks like des and cast5 should be considered safe after linearization. Five binaries
produced via PCFL fail to achieve complete data invariance because some memory accesses are

replaced with the shadow memory, which is a unique address for the entire program. Nevertheless,

we could verify that the data contract stated in Theorem 4.26 holds for all the 11 benchmarks

that are shadow safe. Furthermore, in all 13 benchmarks transformed via PCFL, traces of data

9
Notice that assuming that address differences smaller than 64 fit in the same cache line is an oversimplification. If we

have 64B memory blocks, two addresses are in the same cache line (considering a typical set-associative architecture)

whenever they differ only in their last 6 address-bits. Thus, we can have addresses that differ less than 64 which still belong

to different memory blocks. As an example, 0b00111110 = 62 and 0b01000001 = 65 are less than 64 apart, but belong to

blocks 0b00xxxxxx and 0b01xxxxxx. To provide a more informative metric, Figure 27 also reports the maximum among

indices of the most significant differing bit between pairs of addresses.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

addresses have always the same length — a direct consequence of operation invariance. As a final

observation in regards to data invariance, we ported ssl3 and donna from FaCT. When written

in FaCT, every benchmark is publicly safe, and we succeed in delivering the same guarantees as

that domain-specific language: complete non-interference between secret inputs and addresses

accessed in the instruction and data caches.

CFGgrind: Figure 28 reports the number of instructions fetched during the execution of the

linearized functions. In this case, we use CFGgrind to count only instructions that exist within

the scope of linearized functions
10
. This dynamic analysis does not prove operation invariance;

however, a divergence in the number of fetched instructions demonstrates the absence of this

property. We show results only for non-optimized programs, for the sake of space. Nevertheless,

the same qualitative results (column opr) remain true for codes optimized with clang -O3.

input-1 input-2 input-1 input-2 input-1 input-2 input-1 input-2 input-1 input-2 input-1 input-2
12,303 12,309 60,486 53,245 66,579 28,712 6,158
8,208 679 240,960 X X X X X X X X
6,153 3,078 36,914 23,578 95,265 47,649 40,987 20,507 5,084
26,464 26,784 205,824 UL UL 127,220 107,220 UL UL
7,856 7,793 26,820 UL UL X X X X UL UL
613 421 7,830 3,408 22,533 8,784 5,813 4,200 693
496 531 1,584 2,266 663 421 830

16,580 16,536 56,022 46,676 35,539 18,501 12,233
125,893,642 125,893,220 1,153,493,104 UL UL 8,668,376,240 565,568,000 UL UL

262 262 802 28,721 7,160 3,437
5,227 5,413 43,295 19,510 1,941,609 37,759 3,809 4,022
5,023 5,025 27,029 17,004 3,786 2,027 3,005
39,021 39,024 90,065 102,555 3,245,012 798,024 14,255

Original PCFL Lif CTT-Orig

hash-one
plain-many
plain-one
donna
ssl3

log-rdct
3way
des

loki91
cast5

dijkstra
findmax

histogram

X Tool crashes or transformed program crashes

CTT-CFL

Important: the number of instructions counted in this table is not a proxy for the speed of linearized code.
SC-Eliminator

UL Program contains Unbounded Loops; hence, cannot be linearized

Fig. 28. Number of instructions fetched during the execution of functions linearized by different tools.
input-1: number of instructions executed with the first input. input-2: number of instructions executed with
the second input. Whenever input − 1 = input − 2, we merge the two columns. Because SC-Eliminator
outlines part of the linearized code, we can count only a small fraction of the code that it generates. As a
consequence, the number of instructions measured for the code transformed by SC-Eliminator is the same
if we use it with our without data linearization.

In all the thirteen benchmarks, codes partially linearized using our technique always fetch

the same number of instructions. Such is also the case for programs that could be compiled

with Lif. We failed to observe operation invariance in one program produced by SC-Eliminator:
dijkstra, confirming the warning issued by CTgrind. Two programs transformed by Constantine,
plain-one and log-redact, did not process the same number of instructions. These issues have

been reported back to Borrello et al. According to Pietro Borrello, one of Constantine’s authors,
the leak happens because the input used to test the tool forces more iterations of the linearized

10
The numbers that Figure 28 show is not a proxy for running time of linearized programs. In this experiment, we cannot use

CFGgrind to count the number of instructions fetched during the execution of the entire binary file. It is necessary to probe

only linearized functions because the ELF executables contain code that is not touched by linearization. For instance, the

code inserted by the lld linker (like runtime symbol resolution and the procedure linkage table), or the code invoked from

external libraries (mostly to implement input/output). In particular, we experimented difficulty to count instructions that

SC-Eliminator linearized. It outlines large chunks of the linearized code, and we cannot, at the binary level, distinguish

code linearized by SC-Eliminator from code that it has not touched. Thus, Figure 28 shows only a small part of the code

transformed by SC-Eliminator, namely, the instructions that remain in the original linearized functions.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

loop than the input used to train it. In Borrello’s words: “Constantine is expecting such a case, and
dynamically updates the loop-controlling variable if it observes the loop being executed more than
it expects, and at the next iteration, the loop will be executed the new maximum number of times.
This incurs a one-time side channel but mitigates the fact of Constantine not being fully trained with
worst-case conditions11".

5.5 RQ5: Comparison with a Domain-Specific Language
Our implementation of partial-control flow linearization in LLVM in practice gives developers

the chance to obtain in C (or other languages that LLVM supports) the same security guaran-

tees provided by FaCT [Cauligi et al. 2019]. However, contrary to C, FaCT deals with less general

control-flow constructs. Currently, FaCT supports three control-flow statements: if-then-else;
for-from-to and return. Our implementation of PCFL, in contrast, handles the whole of the

LLVM intermediate representation, whose unstructured control flow subsumes C/C++’s, including

constructs absent in FaCT, such as do-while, break, continue and goto12. This section compares

programs written in FaCTwith similar codes written in C, and linearized with PCFL. This evaluation

uses five benchmarks. Three of them, openssl-ssl3, donna and crypto-secretbox were taken
from the FaCT repository and translated to C. The other two, plain-one and plain-hash, were
translated from C to FaCT. Except for crypto-secretbox, all these programs are used in the exper-

iments that we report in previous sections. We omit crypto-secretbox from those experiments

because none of the other tools, Lif, Constantine or SC-Eliminator, can linearize it.

open-ssl3

donna

plain-one

without main

PCFL FaCT

with main without main with main

hash-one

crypto-
secretbox

Fig. 29. Comparison between programs written in C and linearized with PCFL, and similar programs written
in FaCT, using equivalent control-flow structures. The column .o shows the size, in bytes, of the binary object
file. The column Instrs shows the number of instructions in the LLVM representation of each program.
Because they use different main functions, we show results with and without this routine. All these programs,
once converted to the LLVM representation, are optimized with opt -O3.

The programs written in FaCT are, usually, shorter and faster. However, the programs that we

generate contain code to ensure memory safety, like the use of the shadow memory, as in Figure 21

(b). Therefore, every linearized load operation in a program produced with our technique will

contain four extra instructions absent in the equivalent FaCT program. Moreover, the transformation

of a store operation requires a load to read the current value in memory. Because this load is also

safe, the four-instruction overhead also applies. In FaCT, developers use a type qualifier, assume(𝑒),
to specify that the expression 𝑒 is the upper bound of an array. This clause works as a contract: the

11
P. Borrello, personal communication, December 29th, 2022.

12
PCFL has one restriction concerning the goto statement: loops must be natural. The implication of this fact is that PCFL

will not linearize a loop with multiple entry points. In the C programming language, such loops can be created with goto.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

compiler does not generate code to ensure in-bounds memory accesses; rather, the programmer

promises that buffer limits will be respected. Thus, it is possible to provoke out-of-bounds access in

the FaCT program, because contracts are not verified. To this effect, we have forced out-of-bounds

accesses in plain-one — something that cannot happen in the binary produced with PCFL.

Programmability. In our experience, porting C programs to FaCT was relatively difficult: only

two benchmarks, plain-one and plain-hash, admitted straightforward translation to FaCT. The
main challenge is dealing with control-flow constructions that are absent in the DSL. Porting FaCT
programs to C, in turn, was easier, albeit time consuming. Nevertheless, even when translation is

simple, the benchmarks written in C are not strictly equivalent to the programs written in FaCT.
FaCT contains builtin functions that do not translate directly to C:

• The builtin function view, which returns a slice of an array. We simulate it with pointer

arithmetics: the upper limit of a “view" is given by a base address plus an offset.

• The builtin function len that returns the length of an array. To replace it, our C benchmarks

use a struct with two fields: a pointer data to the array, and an unsigned integer size,
denoting the size of that array (See Figure 3). In most programs, our static analysis suffices to

associate size information with the array itself. When such is not possible, memory accesses

in non-executed paths are replaced with accesses to the shadow memory.

• The declassify function, which marks data as “public". We could not simulate this feature

in C; hence, our code will contain more linearized parts than the code produced from FaCT
programs that use it.

6 RELATEDWORK
This paper draws its contributions from two different communities: high-performance computing

and software security. Concerning the former, this work is related to research about control-flow

linearization. Concerning the latter, it is related to the static elimination of side channels. In this

section, we explain how the paper connects with previous contributions in these two domains.

Partial Control-Flow Linearization. In its essence, Moll and Hack [2018]’s algorithm for control-

flow linearization is an efficient way to support predication, inasmuch as it spares uniform branches

from being predicated. Predication, as already explained in §3, is a technique to convert control

dependencies into data dependencies. To the best of our knowledge, the first description of a

systematic way to perform predication is due to Allen et al. [1983], although the problem had

already been described in earlier work [Towle 1976; Wolfe 1978]. After Allen et al.’s original foray in

the field, predication has been refined and expanded in many different ways, and today is standard

textbook material [Clements 2013].

The fact that control-flow linearization was already a concern almost 40 years ago makes it

surprising thatMoll and Hack’s algorithm took so long to emerge. Compared to previous work, PCFL

enjoys a number of advantages. First, when compared to Ferrante and Mace [1985]’s well-known

linearization approach, Moll and Hack’s algorithm has better complexity (linear vs log-linear).

Second, it is substantially simpler than previous approaches of similar service, such as Karrenberg

and Hack [2012]’s. In the words of Moll and Hack: “Karrenberg and Hack’s method spans over five
algorithm listings”, whereas the PCFL routine is fully described by the 33 lines of Python in Figure 5.

Finally, PCFL handles unstructured control flows, in contrast to heuristics used in practice [Moreira

et al. 2017] by the Intel SPMD Compiler, for instance.

Nevertheless, we emphasize that this paper is not about the design of a partial control-flow

linearization approach. We reuse Moll and Hack’s algorithm almost without modifications. Our

changes in the algorithm have been described in §4.5. There exists only one important difference

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

between Moll and Hack’s implementation and ours, which is a consequence of the different purpose

that we have when using partial control-flow linearization. In Moll and Hack’s context, loops only

terminate when all threads exit it; thus, the linearized loop contains only one exit block, at its end.

Moll and Hack add phi functions to identify through which exit each thread left the loop. This

approach is similar to what Constantine does: it computes an upper bound for the loop and forces

execution up to this trip count. In our case, a loop can have multiple exits: indeed, any exit that is

only dependent on public data will be left untouched by our transformation.

Side Channel Elimination via Control-Flow Linearization. Timing attacks attracted much attention

during the nineties [Dhem et al. 1998; Kocher 1996; Kocher et al. 1999; Wray 1992]. However, the

problem was known before [Singel 1976]. The literature contains many examples of protections

against such attacks. This paper is concerned with the so-called white-box mitigations, which

require intervening in the software. Wu et al. [2018a] calls such methodologies program repair. For
an overview of black-box approaches, such as defenses implemented at the operating-system level,

we refer the reader to the comprehensive discussion presented by Cock et al. [2014].

The current state-of-the-art techniques that make programs operation invariant via some form

of control-flow linearization are Soares and Pereira [2021]’s and Borrello et al. [2021]’s works. The

former is fully static; the latter combines static and dynamic analyses. As mentioned in §1, our

approach is more general than Soares and Pereira’s, because it handles programs with loops. When

dealing with loop-free programs where all branches are tainted, these techniques are equivalent. If

the loop-free program contains non-tainted branches, then our technique will not linearize them,

whereas Soares and Pereira’s will. In terms of operation invariance, we expect our method to

handle the same programs that Constantine does; however, Constantine also protects the data

cache, something that we only do for publicly safe programs. Nevertheless, whereas Constantine
requires executing the program, our approach is fully static.

7 CONCLUSION
The key contribution of this work is to adapt a vectorization technique — partial control-flow

linearization — to solve an open question in side-channel resistance: the static elimination of

operation-based side channels in general programs while preserving branches controlled by public

inputs. We believe that the techniques discussed in this paper let a programmer write, directly in C,

code that meets the same safety properties of algorithms written in the FaCT [Cauligi et al. 2019]
domain-specific language. As we have discussed in §5, our side-channel elimination technique

performs favorably when compared with Lif [Soares and Pereira 2021] and Constantine [Borrello
et al. 2021], state-of-the-art tools released in 2021. Yet, in contrast to Lif, it handles programs with

unbounded loops, and in contrast to Constantine, it delivers operation invariance statically.

Software. Our prototype is available at https://github.com/lac-dcc/lif .

REFERENCES
Johan Agat. 2000. Transforming out Timing Leaks. In POPL. Association for Computing Machinery, New York, NY, USA,

40–53. https://doi.org/10.1145/325694.325702

J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. 1983. Conversion of Control Dependence to Data Dependence.

In POPL. Association for Computing Machinery, New York, NY, USA, 177–189. https://doi.org/10.1145/567067.567085

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. 2016. Verifying Constant-Time

Implementations. In SEC. USENIX Association, USA, 53–70. https://doi.org/10.5555/3241094.3241100

J. B. Almeida, M. Barbosa, G. Barthe, B. Grégoire, A. Koutsos, V. Laporte, T. Oliveira, and P. Strub. 2020. The Last Mile:

High-Assurance and High-Speed Cryptographic Implementations. In Security & Privacy. IEEE, New York, NY, USA,

965–982. https://doi.org/10.1109/SP40000.2020.00028

Andrew W. Appel. 1997. Modern Compiler Implementation in Java. Cambridge University Press, USA.

, Vol. 1, No. 1, Article . Publication date: March 2023.

https://github.com/lac-dcc/lif
https://doi.org/10.1145/325694.325702
https://doi.org/10.1145/567067.567085
https://doi.org/10.5555/3241094.3241100
https://doi.org/10.1109/SP40000.2020.00028

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

Musard Balliu, Mads Dam, and Roberto Guanciale. 2014. Automating Information Flow Analysis of Low Level Code. In CCS.
Association for Computing Machinery, New York, NY, USA, 1080–1091. https://doi.org/10.1145/2660267.2660322

Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David Pichardie, and Alix Trieu. 2019.

Formal Verification of a Constant-Time Preserving C Compiler. Proc. ACM Program. Lang. 4, POPL, Article 7 (Dec. 2019),
30 pages. https://doi.org/10.1145/3371075

Gilles Barthe, Benjamin Grégoire, Vincent Laporte, and Swarn Priya. 2021. Structured Leakage and Applications to

Cryptographic Constant-Time and Cost. In CCS. Association for Computing Machinery, New York, NY, USA, 462–476.

https://doi.org/10.1145/3460120.3484761

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida. 2021. Constantine: Automatic Side-

Channel Resistance Using Efficient Control and Data Flow Linearization. In CCS (Virtual Event, Republic of Korea).

Association for Computing Machinery, New York, NY, USA, 715–733. https://doi.org/10.1145/3460120.3484583

Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles

Barthe, Ranjit Jhala, and Deian Stefan. 2019. FaCT: A DSL for Timing-Sensitive Computation. In PLDI. Association for

Computing Machinery, New York, NY, USA, 174–189. https://doi.org/10.1145/3314221.3314605

S. Chattopadhyay and A. Roychoudhury. 2018. Symbolic Verification of Cache Side-Channel Freedom. Transactions on
Computer-Aided Design of Integrated Circuits and Systems 37, 11 (2018), 2812–2823. https://doi.org/10.1109/TCAD.2018.

2858402

Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe. 2021. VeGen: A Vectorizer Generator for SIMD

and Beyond. In ASPLOS (Virtual, USA). Association for Computing Machinery, New York, NY, USA, 902–914. https:

//doi.org/10.1145/3445814.3446692

Jeroen V. Cleemput, Bart Coppens, and Bjorn De Sutter. 2012. Compiler Mitigations for Time Attacks on Modern X86

Processors. Trans. Archit. Code Optim. 8, 4, Article 23 (Jan. 2012), 20 pages. https://doi.org/10.1145/2086696.2086702

Alan Clements. 2013. Computer Organization and Architecture: Themes and Variations. Cengage Learning, USA.
David Cock, Qian Ge, Toby Murray, and Gernot Heiser. 2014. The Last Mile: An Empirical Study of Timing Channels on SeL4.

In CCS. Association for Computing Machinery, New York, NY, USA, 570–581. https://doi.org/10.1145/2660267.2660294

Bruno Coutinho, Diogo Sampaio, Fernando Magno Quintao Pereira, and Wagner Meira Jr. 2011. Divergence Analysis and

Optimizations. In PACT. IEEE, USA, 320–329. https://doi.org/10.1109/PACT.2011.63

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1989. An Efficient Method of Computing Static Single

Assignment Form. In POPL. Association for Computing Machinery, New York, NY, USA, 25–35. https://doi.org/10.1145/

75277.75280

Jean-François Dhem, François Koeune, Philippe-Alexandre Leroux, Patrick Mestré, Jean-Jacques Quisquater, and Jean-

Louis Willems. 1998. A Practical Implementation of the Timing Attack. In CARDIS (Lecture Notes in Computer Science,
Vol. 1820), Jean-Jacques Quisquater and Bruce Schneier (Eds.). Springer-Verlag, Berlin, Heidelberg, 167–182. https:

//doi.org/10.1007/10721064_15

Alexander Fell, Hung Thinh Pham, and Siew-Kei Lam. 2019. TAD: Time Side-Channel Attack Defense of Obfuscated Source

Code. In ASP-DAC. Association for Computing Machinery, New York, NY, USA, 58–63. https://doi.org/10.1145/3287624.

3287694

Jeanne Ferrante and Mary Mace. 1985. On Linearizing Parallel Code. In PLDI. Association for Computing Machinery, New

York, NY, USA, 179–190. https://doi.org/10.1145/318593.318636

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The Program Dependence Graph and Its Use in Optimization.

Trans. Program. Lang. Syst. 9, 3 (1987), 319–349. https://doi.org/10.1145/24039.24041

Michael J. Flynn. 1972. Some Computer Organizations and Their Effectiveness. Transactions on Computers 21, 9 (sep 1972),

948–960. https://doi.org/10.1109/TC.1972.5009071

Michael Garland and David B. Kirk. 2010. Understanding Throughput-Oriented Architectures. Commun. ACM 53, 11 (nov

2010), 58–66. https://doi.org/10.1145/1839676.1839694

William Sealy Gosset. 1908. The Probable Error of a Mean. Biometrika 6, 1 (March 1908), 1–25. https://doi.org/10.1093/

biomet/6.1.1 Originally published under the pseudonym “Student”.

Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan Haller, and Manuel Costa. 2017. Strong and Efficient

Cache Side-Channel Protection Using Hardware Transactional Memory. In SEC. USENIX Association, USA, 217–233.

https://doi.org/10.5555/3241189.3241208

Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-Software Contracts for Secure Speculation. In

Security & Privacy. IEEE, New York, US, 1868–1883. https://doi.org/10.1109/SP40001.2021.00036

Ralf Karrenberg and Sebastian Hack. 2012. Improving Performance of OpenCL on CPUs. In CC. Springer-Verlag, Berlin,
Heidelberg, 1–20. https://doi.org/10.1007/978-3-642-28652-0_1

Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In CRYPTO.
Springer-Verlag, Berlin, Heidelberg, 104–113. https://doi.org/10.1007/3-540-68697-5_9

, Vol. 1, No. 1, Article . Publication date: March 2023.

https://doi.org/10.1145/2660267.2660322
https://doi.org/10.1145/3371075
https://doi.org/10.1145/3460120.3484761
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1109/TCAD.2018.2858402
https://doi.org/10.1109/TCAD.2018.2858402
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/3445814.3446692
https://doi.org/10.1145/2086696.2086702
https://doi.org/10.1145/2660267.2660294
https://doi.org/10.1109/PACT.2011.63
https://doi.org/10.1145/75277.75280
https://doi.org/10.1145/75277.75280
https://doi.org/10.1007/10721064_15
https://doi.org/10.1007/10721064_15
https://doi.org/10.1145/3287624.3287694
https://doi.org/10.1145/3287624.3287694
https://doi.org/10.1145/318593.318636
https://doi.org/10.1145/24039.24041
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1145/1839676.1839694
https://doi.org/10.1093/biomet/6.1.1
https://doi.org/10.1093/biomet/6.1.1
https://doi.org/10.5555/3241189.3241208
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1007/978-3-642-28652-0_1
https://doi.org/10.1007/3-540-68697-5_9

Side-Channel Elimination via Partial Control-Flow Linearization

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis. In CRYPTO. Springer-Verlag, Berlin,
Heidelberg, 388–397. https://doi.org/10.1007/3-540-48405-1_25

Adam Langley. 2010. CTGrind—checking that functions are constant time with Valgrind. https://github.com/agl/ctgrind

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation.

In CGO. IEEE Computer Society, Washington, USA, 75. https://doi.org/10.5555/977395.977673

Simon Moll and Sebastian Hack. 2018. Partial Control-Flow Linearization. In PLDI. Association for Computing Machinery,

New York, NY, USA, 543–556. https://doi.org/10.1145/3192366.3192413

Rubens E.A. Moreira, Caroline Collange, and Fernando Magno Quintão Pereira. 2017. Function Call Re-Vectorization. In

PPoPP. Association for Computing Machinery, New York, NY, USA, 313–326. https://doi.org/10.1145/3018743.3018751

Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation.

In PLDI. Association for Computing Machinery, New York, NY, USA, 89–100. https://doi.org/10.1145/1250734.1250746

V. C. Ngo, M. Dehesa-Azuara, M. Fredrikson, and J. Hoffmann. 2017. Verifying and Synthesizing Constant-Resource

Implementations with Types. In Security and Privacy. IEEE, Washington, DC, USA, 710–728. https://doi.org/10.1109/SP.

2017.53

Willard Rafnsson, Limin Jia, and Lujo Bauer. 2017. Timing-Sensitive Noninterference through Composition. In POST.
Springer-Verlag, Heidelberg, Germany, 3–25. https://doi.org/10.1007/978-3-662-54455-6_1

Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. 2017. Dude, is My Code Constant Time?. In DATE. European Design

and Automation Association, Leuven, BEL, 1701–1706. https://doi.org/10.23919/DATE.2017.7927267

Andrei Rimsa, José Nelson Amaral, and Fernando M. Q. Pereira. 2021. Practical dynamic reconstruction of control flow

graphs. Softw. Pract. Exp. 51, 2 (2021), 353–384. https://doi.org/10.1002/spe.2907

Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha. 2016. Sparse Representation of Implicit Flows

with Applications to Side-Channel Detection. In CC. Association for Computing Machinery, New York, NY, USA, 110–120.

https://doi.org/10.1145/2892208.2892230

Diogo Sampaio, Rafael Martins de Souza, Caroline Collange, and Fernando Magno Quintão Pereira. 2014. Divergence

Analysis. Trans. Program. Lang. Syst. 35, 4, Article 13 (2014), 36 pages. https://doi.org/10.1145/2523815

Ryan Singel. 1976. Declassified NSA Document Reveals the Secret History of TEMPEST about (TEMPEST: A Signal Problem).

Cryptologic Spectrum 2, 3 (1976), 26–30.

Luigi Soares and Fernando Magno Quintão Pereira. 2021. Memory-Safe Elimination of Side Channels. In CGO. IEEE,
Washington, USA, 200–210. https://doi.org/10.1109/CGO51591.2021.9370305

Victor Hugo Sperle Campos, Péricles Rafael Alves, Henrique Nazaré Santos, and Fernando Magno Quintão Pereira. 2016.

Restrictification of Function Arguments. In CC. Association for Computing Machinery, New York, NY, USA, 163–173.

https://doi.org/10.1145/2892208.2892225

Saeid Tizpaz-Niari, Pavol Černý, and Ashutosh Trivedi. 2019. Quantitative Mitigation of Timing Side Channels. In CAV.
Springer, Heidelberg, Germany, 140–160. https://doi.org/10.1007/978-3-030-25540-4_8

Ross Albert Towle. 1976. Control and Data Dependence for Program Transformations. Ph.D. Dissertation. University of Illinois
at Urbana-Champaign, USA. AAI7624191.

J. Van Cleemput, B. De Sutter, and K. De Bosschere. 2020. Adaptive Compiler Strategies for Mitigating Timing Side Channel

Attacks. Transactions on Dependable and Secure Computing 17, 1 (2020), 35–49. https://doi.org/10.1109/TDSC.2017.2729549
Michael Joseph Wolfe. 1978. Techniques for improving the inherent parallelism in programs – Master Thesis. Master’s thesis.

University of Illinois at Urbana-Chaimpain.

John C. Wray. 1992. An Analysis of Covert Timing Channels. J. Comput. Secur. 1, 3–4 (may 1992), 219–232. https:

//doi.org/10.1109/RISP.1991.130767

Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018a. Eliminating Timing Side-Channel Leaks Using

Program Repair. In ISSTA. Association for Computing Machinery, New York, NY, USA, 15–26. https://doi.org/10.1145/

3213846.3213851

Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018b. [ISSTA ’18 Artifact Evaluation] Eliminating Timing
Side-Channel Leaks Using Program Repair. Zenodo. https://doi.org/10.5281/zenodo.1299357

Steve Zdancewic and Andrew C. Myers. 2001. Robust Declassification. In CSFW. IEEE, USA, 5. https://doi.org/10.5555/

872752.873524

Rui Zhang, Michael D. Bond, and Yinqian Zhang. 2022. Cape: Compiler-Aided Program Transformation for HTM-Based

Cache Side-Channel Defense. In CC. Association for Computing Machinery, New York, NY, USA, 181–193. https:

//doi.org/10.1145/3497776.3517778

, Vol. 1, No. 1, Article . Publication date: March 2023.

https://doi.org/10.1007/3-540-48405-1_25
https://github. com/agl/ctgrind
https://doi.org/10.5555/977395.977673
https://doi.org/10.1145/3192366.3192413
https://doi.org/10.1145/3018743.3018751
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1109/SP.2017.53
https://doi.org/10.1109/SP.2017.53
https://doi.org/10.1007/978-3-662-54455-6_1
https://doi.org/10.23919/DATE.2017.7927267
https://doi.org/10.1002/spe.2907
https://doi.org/10.1145/2892208.2892230
https://doi.org/10.1145/2523815
https://doi.org/10.1109/CGO51591.2021.9370305
https://doi.org/10.1145/2892208.2892225
https://doi.org/10.1007/978-3-030-25540-4_8
https://doi.org/10.1109/TDSC.2017.2729549
https://doi.org/10.1109/RISP.1991.130767
https://doi.org/10.1109/RISP.1991.130767
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.5281/zenodo.1299357
https://doi.org/10.5555/872752.873524
https://doi.org/10.5555/872752.873524
https://doi.org/10.1145/3497776.3517778
https://doi.org/10.1145/3497776.3517778

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

A PROOFS OF THEOREMS
This section contains proofs for the theorems in §4, which we have omitted from the main body

of the paper. We shall henceforth refer to properties about partial control-flow linearization from

Moll and Hack [2018]. For more details about the proofs, we refer the reader to Moll and Hack’s

original presentation. The first property that we revisit talks about the correspondence between

paths in the original CFG 𝐺 and in the partially linearized CFG 𝐺𝑙 , and it is stated as follows:

Theorem A.1 (Path Embedding [Moll and Hack 2018, Theorem 3.2]). For each path 𝜋 ∈ 𝐺 ,
there is a path 𝜋𝑙 ∈ 𝐺𝑙 such that 𝜋 is a subpath of 𝜋𝑙 . By subpath, we mean that the nodes seen in 𝜋
can be found in 𝜋𝑙 in the same order that they appear in 𝜋 .

Lemma A.2 says that PCFL, as described in this paper, does not add to nor remove any blocks

from the CFG of a program. We write 𝑉 (𝐺) for the vertices of a graph 𝐺 .
Lemma A.2 (PCFL Preserves Basic Blocks). Let 𝐺𝑙 be the partial linearization of CFG 𝐺 . Then,

𝑉 (𝐺) = 𝑉 (𝐺𝑙).
Proof. The proof follows from the PCFL algorithm defined in Fig. 5 and the approach for

handling tainted loops described in §4.5.2, which differs from Moll and Hack’s method. □

Lemma A.4 states that any block executed in program 𝑃 has a corresponding block that is active

in the linearized program 𝑃𝑙 when given the same input. Definition A.3 formalizes the notion of

active block/instruction and edge/incoming value. We write ⟨. . .⟩ for ordered sequences.

Definition A.3 (Active Block/Edge). Let 𝑢 and 𝑣 be basic blocks in a program 𝑃 . Block 𝑣 is said to

be active if its block condition is true. An instruction that belongs to 𝑣 is active whenever block 𝑣
itself is active. Similarly, an edge 𝑢 → 𝑣 in 𝑃 is said to be active if its edge condition is true. Finally,

we say that an incoming value of a phi function is active whenever its corresponding incoming

edge is active.

Lemma A.4 (Active Trace). Let 𝑃𝑙 be the partial linearization of 𝑃 and let 𝜏 be the trace of blocks
executed in 𝑃 when given an arbitrary input. There exists a unique trace of blocks 𝜏𝑙 executed in 𝑃𝑙
when given the same input such that, for every block 𝑣 ∈ 𝜏 , it follows that 𝑣 ∈ 𝜏𝑙 and 𝑣 is active in 𝑃𝑙 .

Proof. The proof will be by induction on 𝜏 :

Base case: In the base case, there exists a single block 𝑣 ∈ 𝜏 , which consequently is the first

block of 𝑃 . Since the first block has no predecessors in 𝑃 and we do not add to nor remove

any blocks from 𝑃𝑙 — as stated by Lemma A.2 — the block condition of 𝑣 is true. Therefore,

block 𝑣 will be active in 𝑃𝑙 (see Definition A.3).

Induction step: Let 𝜏 = ⟨𝑣1, . . . , 𝑣𝑘⟩. By induction, we know that there exists 𝜏𝑙 executed in 𝑃𝑙
such that 𝑣𝑖 is active, 1 ≤ 𝑖 < 𝑘 . Let 𝑣 𝑗 ∈ 𝜏 , 𝑗 < 𝑘 , be the predecessor of 𝑣𝑘 that was executed

in 𝑃 . Since the edge 𝑣 𝑗 → 𝑣𝑘 was taken, we know that the edge condition of edge 𝑣 𝑗 → 𝑣𝑘 is

true, and from the way block conditions are computed (Figures 10 and 12) — i.e. based on

edge conditions — it follows that the block condition of 𝑣𝑘 is true as well. Hence, we have

that 𝑣𝑘 is active in 𝑃𝑙 . Furthermore, from Theorem A.1, we know that 𝑣𝑘 will be reachable

from 𝑣 𝑗 in 𝑃𝑙 . Thus, since we are considering the same input for 𝑃 and 𝑃𝑙 , it must be that

𝑣 ∈ 𝜏𝑙 , which is the unique trace for such an input.

□

The next lemma is about the equivalence between the expressions in the original program 𝑃 and

the transformed program 𝑃 ′. It will be used in the proof for Theorem 4.13 (correctness). We write

⟦𝑒⟧ to indicate the evaluation of 𝑒 . When writing := in assignments, := can be either = (for general

assignments) or <− (for stores).

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

Lemma A.5 (Expression Eqivalence). Let 𝑇 (𝑃) = 𝑃 ′ be the partial linearization of program
𝑃 with instructions rewritten, as described in §§4.6 and 4.7. Let 𝑥 := 𝑒 be an assignment in 𝑃 and let
𝑥 ′ := 𝑒 ′ be the counterpart assignment of 𝑥 in 𝑃 ′. Then, for any instance of the inputs such that 𝑥 := 𝑒

is executed in 𝑃 , it follows that 𝑥 ′ := 𝑒 ′ is active in 𝑃 ′ and ⟦𝑒⟧ = ⟦𝑒 ′⟧.

Proof. Consider an arbitrary instance of the inputs and let 𝜏 be the ordered sequence of as-

signments in 𝑃 when given such an input. From Lemma A.4, any block executed in 𝑃 is active in

𝑃 ′. Hence, if 𝑥 := 𝑒 ∈ 𝜏 , its counterpart 𝑥 ′ := 𝑒 ′ will be active in 𝑃 ′, since they belong to the same

block. It remains to show the correspondence between expressions 𝑒 and 𝑒 ′. The proof will be by
structural induction on the multiple assignment forms:

(a) x = public | secret: These special assignments only indicate that 𝑥 corresponds to an input

and the transformation described in this chapter never really touches them. Hence, if the

assigment is active in 𝑃 ′, the value assigned will be the same as in 𝑃 , for we are considering

the same inputs for both the original program 𝑃 and the repaired version 𝑃 ′.
(b) x = 𝑒: Let expression 𝑒 be composed by subcomponents 𝑣1, . . . , 𝑣𝑛 . Then, by induction on

each 𝑣𝑖 , 1 ≤ 𝑖 ≤ 𝑛, we know that ⟦𝑣𝑖⟧ = ⟦𝑣 ′𝑖⟧, where 𝑣 ′𝑖 is the counterpart of 𝑣𝑖 in 𝑃 ′. Thus, it
must be that 𝑒 evaluates to the same value in both 𝑃 and 𝑃 ′, when given the same inputs.

(c) x = m[𝑖]: From rule rewriteld seen in Figure 20, we know that this assignment will be rewrit-

ten as x = a[i′]. But, since the assignment is active, i.e. the block condition is true, it follows

that a ≡ m and i′ ≡ 𝑖 . That is, the assignment that will be performed is the same in both 𝑃

and 𝑃 ′. By induction we know that the values of m and 𝑖 are the same in 𝑃 and 𝑃 ′, when given

the same input. Hence, the memory access in 𝑃 ′, under the described circumstances, will be

the same as in 𝑃 . It remains to show that the value stored in that address is the same in 𝑃 and

𝑃 ′, which follows by induction.

(d) m[𝑖] ← 𝑒: From rule rewritest (Figure 20), we know that this assignment will be rewritten

as a[i′] ← 𝑒 ′. Since the assignment is active in 𝑃 ′, we have 𝑒 ′ ≡ 𝑒 , a ≡ m and i′ ≡ 𝑖 . By the

same reasoning used in case (b), we can conclude that ⟦𝑒⟧ = ⟦𝑒 ′⟧. Thus, since the memory

region accessed in 𝑃 and 𝑃 ′ will be the same, the value stored in this address, after the store

operation is performed, will be the same in 𝑃 and 𝑃 ′.
(e) x = phi [𝑒1, ℓ1], . . . , [𝑒𝑛, ℓ𝑛]: First notice that there cannot be two edge conditions EC (ℓ𝑖 →
ℓ) and EC (ℓ𝑗 → ℓ), 𝑖 ≠ 𝑗 , that are true at the same time, since two edges cannot be taken

simultaneously. From function rewrite𝜙 defined in Figure 19, we know that the edge conditions

are used as the conditions of ctsel instructions that link incoming values that did not fit in

the transformed phi function. The counterpart of x in 𝑃 ′ will either be the transformed phi

function or the last ctsel created, when any. Let ℓ𝑖 → ℓ be the active edge (i.e. edge condition

is true). Then, either the incoming value 𝑒𝑖 still is an incoming value in the transformed

phi function, and consequently the condition of every ctsel will be false, or there will be
a single ctsel whose condition is true and which will select 𝑒𝑖 . In both cases, we have

⟦phi [𝑒1, ℓ1], . . . , [𝑒𝑛, ℓ𝑛]⟧ = ⟦𝑒 ′⟧.
(f) x = ctsel 𝑐, 𝑣𝑡 , 𝑣 𝑓 : This kind of assignment is never modified by the transformation described

in this chapter. Thus, it suffices to show that 𝑐 , 𝑣𝑡 and 𝑣 𝑓 evaluate to the same values in 𝑃 and

𝑃 ′, which follows directly by induction.

□

With Lemmas A.4 and A.5, we can prove Theorem 4.13:

Theorem 4.13 (Semantics). Let 𝑇 (𝑃) = 𝑃 ′ be the partial linearization of program 𝑃 with instruc-
tions rewritten, as described in §§4.6 and 4.7. If 𝑃 ′ terminates, then programs 𝑃 and 𝑃 ′ produce the
same set of side effects.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

Proof. The only instruction in our toy language that can produce side effects is a store. From

function rewritest defined in Figure 20, we have the following three cases:

Store is active: Let the store be of the form𝑚′ <− 𝑒 ′ and let𝑚 <− 𝑒 be its counterpart in 𝑃 .
Since𝑚′ <− 𝑒 ′ is active in 𝑃𝑙 , the original memory region is accessed — i.e.𝑚 ≡𝑚′ — and

the store updates the state of the memory. By Lemma A.5, we have ⟦𝑒⟧ = ⟦𝑒 ′⟧. Therefore,
the state of𝑚 in both 𝑃 and 𝑃𝑙 is updated with the same value, thus causing the same effects.

Store is not active ∧ access is safe: The original memory region is accessed, but the value

to be assigned is replaced with the current value stored in that memory address; hence, the

store is silent and no effect can be observed — i.e. the state of the memory does not change

after the store is executed.

Store is not active ∧ access is not safe: The original store is replaced with a store to shadow
and the value to be assigned is replaced with the value currently stored in shadow; hence,

the store is performed silently and no effect can be observed.

It remains to show that every store executed in program 𝑃 is active in program 𝑃 ′, which follows

from Lemma A.4. □

The second property from Moll and Hack [2018] that we revisit is related to the post-dominance

relation in 𝐺𝑙 . We write 𝑢 ⪰PD 𝑣 for post dominance in the original graph 𝐺 and 𝑢 ⪰PD
𝑙
𝑣 for post

dominance in the linearized graph 𝐺𝑙 .

Lemma A.6 (PD for Deferral Edges [Moll and Hack 2018, Lemma B.3]). Let 𝑏 ∈ Index be the
block currently being visited by the loop at Lines 19–32 of the PCFL algorithm in Figure 5 and let 𝑠 be
a block such that 𝑠 ∈ 𝑇 at Line 20 — in other words, 𝑠 is the target of a deferral edge. Then, it follows
that 𝑠 ⪰PD

𝑙
𝑏.

Lemma A.7 (PD for Tainted Branches). Let𝑢 be a tainted block and let 𝑣1 and 𝑣2 be the successors
of block 𝑢 in program 𝑃 . Then, after PCFL either 𝑣1 ⪰PD𝑙 𝑣2 or 𝑣2 ⪰PD𝑙 𝑣1.

Proof. Notice that either 𝑣1 → 𝑣2 or 𝑣2 → 𝑣1 become a deferral edge at Line 31 of Figure 5,

depending on which of them comes first in the compact ordering. Since the proof is the same

for both cases, we will assume the first scenario: 𝑣1 comes first in the compact ordering and thus

𝑣1 → 𝑣2 becomes a deferral edge. When node 𝑣1 is visited, we have (𝑣1, 𝑣2) ∈ 𝐷 and thus 𝑣2 ∈ 𝑇 at

Line 20 of Figure 5. Hence, from Lemma A.6 it follows that 𝑣2 ⪰PD𝑙 𝑣1.

□

Lemma A.8 (PCFL Induces a Single Trace of Operations). Let I = (S,P) be the inputs taken
by 𝑃 , where S is the set of secret and P is the set of public inputs. Let 𝑢 and 𝑣 be blocks in 𝑃 such that
𝑣 ⪰𝑃𝐷 𝑢 and assume that 𝑢 is tainted. Then, after PCFL there is a single trace 𝜏 of operations from 𝑢 to
𝑣 for every instance of P, regardless of S.

Proof. We shall assume an arbitrary fixed instance of P. The proof will be by induction on the

number of operation traces from block 𝑢 to block 𝑣 in the original program 𝑃 :

Base case: If there is no tainted branch in the influence region of node 𝑢 (see Def. 4.22), then

for a fixed instance of P there are exactly two subtraces 𝜏1 and 𝜏2 of operations, each one

starting with one of the successors 𝑤1 and 𝑤2 of 𝑢. Assuming that 𝑤1 comes first than 𝑤2

in the compact ordering (the proof is the same for the opposite scenario), we know that

the edge 𝑢 → 𝑤2 will be removed and, from Lemma A.7, we know that𝑤2 ⪰PD𝑙 𝑤1. Hence,

the instructions from 𝑤2 to 𝑣 will be merged into 𝜏1 — the trace in 𝑃 that starts with 𝑤1 —

forming a single trace 𝜏 in 𝑃𝑙 .

, Vol. 1, No. 1, Article . Publication date: March 2023.

Side-Channel Elimination via Partial Control-Flow Linearization

Induction step: Let𝑊 be the set of tainted blocks in the influence region of node 𝑢 that are

not further nested, i.e. blocks that have nesting level equals to the nesting level of 𝑢 plus one.

By induction, there is exactly one trace 𝜏𝑤 in 𝑃𝑙 from every𝑤 ∈𝑊 to their post dominators.

By combining these disjoint traces, following the paths in 𝑃𝑙 , we get two traces 𝜏1 and 𝜏2
starting with each one of the successors of 𝑢. Then, the same reasoning that we used for the

base case applies and we get a single trace 𝜏 from 𝑢 to 𝑣 in 𝑃𝑙 .

□

Corollary A.9 (Local Operation Invariance). Let I = (S,P) be the inputs taken by 𝑃 , where
S is the set of secret and P is the set of public inputs. Let 𝑢 and 𝑣 be blocks in 𝑃 such that 𝑣 ⪰𝑃𝐷 𝑢
and assume that 𝑢 is tainted. Then, after PCFL the region from block 𝑢 to block 𝑣 in 𝑃𝑙 is operation
invariant.

Now we are ready to prove Theorem 4.16 that talks about operation invariance (see Def. 2.2),

which we recall below:

Theorem 4.16 (PCFL Gives Operation Invariance). Let 𝑃𝑙 be the partial linearization of 𝑃 . 𝑃𝑙 is
operation invariant.

Proof. Let 𝑉 be the set of tainted blocks with nesting level equals zero in the original program

𝑃 (i.e. the outermost branches in 𝑃). From Lemma A.8, we know that, for a fixed instance of P (the

set of public inputs), there is exactly one trace 𝜏𝑣 of operations in 𝑃𝑙 for every 𝑣 ∈ 𝑉 . Hence, by
joining these disjoint traces, we get a single trace 𝜏 for the entire program 𝑃𝑙 . Therefore, for a fixed

instance of P, the sequence of instructions in 𝑃𝑙 is the same regardless of S. □

Corollary A.10 (Trace Relations). Let 𝑃𝑙 be the partial linearization of 𝑃 . Let 𝜏1 and 𝜏2 be
traces of memory addresses that correspond to the execution of 𝑃 when given instances I1 = (S1,P)
and I2 = (S2,P), S1 ≠ S2. If 𝑃𝑙 is operation invariant, then |𝜏1 | = |𝜏2 | and, for any 𝑖 , the accesses to
the addresses 𝜏1 [𝑖] and 𝜏2 [𝑖] are caused by the same instruction.

We then move to the second property that characterizes isochronous programs: data invariance

(see Definition 2.4). We restate Theorem 4.26 below and prove it right after.

Theorem 4.26 (The Data Contract). Let 𝑇 (𝑃) = 𝑃 ′ be the partial linearization of 𝑃 with loads
and stores rewritten after Figure 20. If 𝑃 is publicly safe, then 𝑃 ′ is data invariant. If 𝑃 is shadow
safe, then either 𝑃 ′ is data invariant or there exist two input instances I1 = (S1,P) and I2 = (S2,P),
S1 ≠ S2, with corresponding traces of memory addresses 𝜏1 and 𝜏2 such that 𝜏1 [𝑖] = shadow or
(exclusive) 𝜏2 [𝑖] = shadow, for some 𝑖 .

Proof. First, recall that, from Corollary A.10, it follows that |𝜏1 | = |𝜏2 | and, for any 𝑖 , 𝜏1 [𝑖] and
𝜏2 [𝑖] are memory accesses produced by the same instruction. Nevertheless, their addresses might

not be equal. Let 𝜏1 [𝑖] = 𝑎, 𝜏2 [𝑖] = 𝑎′, and let m[𝑖] be the combination of the base address and the

index that caused such memory accesses. If 𝑃 ′ is publicly safe, we know that 𝑖 < size(𝑚). Hence,
even if the access to m[𝑖] is not active, the original address will always be selected in the ctsels that
define m and 𝑖 (rewritest , Figure 20). Therefore, 𝑎 = 𝑎′ and the theorem holds. If 𝑃 ′ is not publicly
safe, but is shadow safe, then let S1 and S2 be instances of the secret inputs such that 𝑎 ≠ 𝑎′ —
otherwise, the theorem already holds. By inspecting rule rewritest , we know that the only possible

values for ⟦m[𝑖]⟧ are the original address from 𝑃 or shadow. Since we assumed 𝑎 ≠ 𝑎′, either
address 𝑎 or 𝑎′ — but not both — must be the shadow memory. □

From Theorem 4.26, it follows that the only way to have shadow as one of the addresses accessed

by 𝑃 ′ is to have indices larger than the known size of the associated buffer.

, Vol. 1, No. 1, Article . Publication date: March 2023.

Luigi Soares, Michael Canesche, and Fernando MagnoQuintão Pereira

A final property of partial control-flow linearization, as designed by Moll and Hack concerns

optimality. In this case, optimality means that branches controlled by non-tainted predicates are

not modified by linearization. Quoting from Moll and Hack: “Partial linearization preserves uniform
branches in blocks with uniform predicates, as implied by Theorem 4.1 [From Moll and Hack’s work]".
To keep this paper self-sufficient, we restate optimality as a corollary of Theorem C.1 from Moll

and Hack [2018]’s work:

Corollary 4.17 (Optimality). Let ℓ be a basic block within a control-flow graph𝐺 = (𝐸,𝑉), such
that terminator (ℓ) = br𝑝, ℓ1, ℓ2 and not(tainted (𝑝)) is true. The edges ℓ → ℓ1 and ℓ → ℓ2 remain in
𝐸 after partial control-flow linearization.

Proof. Theorem C.1 in Moll and Hack’s work states that given a dominance-compact block

index, partial linearization will preserve an edge 𝑏 → 𝑦 ∈ 𝐸 if 𝑏 is uniform (i.e., not tainted). This

fact only yields Corollary 4.17. Yet, Theorem C.1 gives us more: 𝑏 → 𝑦 remains also if there exists a

block 𝑑 ∈ 𝑉 with the following properties in 𝐺 :

(1) 𝑑 dominates the edge 𝑏 → 𝑦

(2) edge 𝑏 → 𝑦 is uniform in the dominance region 𝑑 .

□

, Vol. 1, No. 1, Article . Publication date: March 2023.

	Abstract
	1 Introduction
	2 Threat Model and Guarantees
	3 Partial Control-Flow Linearization
	4 From PCFL to SCE
	4.1 Preliminaries
	4.2 Baseline Language
	4.3 Tainted-Flow Analysis
	4.4 Predication
	4.5 Control-Flow Linearization
	4.6 Rewriting Phi-Functions
	4.7 Rewriting Memory Operations

	5 Evaluation
	5.1 RQ1: Size of Transformed Code
	5.2 RQ2: Transformation Time
	5.3 RQ3: Performance of Transformed Code
	5.4 R4: Security Evaluation
	5.5 RQ5: Comparison with a Domain-Specific Language

	6 Related Work
	7 Conclusion
	References
	A Proofs of Theorems

